Academic literature on the topic 'Intelligence artificielle en médecine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intelligence artificielle en médecine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intelligence artificielle en médecine"
Matuchansky, Claude. "Intelligence clinique et intelligence artificielle." médecine/sciences 35, no. 10 (October 2019): 797–803. http://dx.doi.org/10.1051/medsci/2019158.
Full textLaroche, Jean Pierre. "Intelligence artificielle en médecine vasculaire." JMV-Journal de Médecine Vasculaire 47 (March 2022): S38. http://dx.doi.org/10.1016/j.jdmv.2022.01.008.
Full textVéry, Philippe, and Ludovic Cailluet. "Intelligence artificielle et recherche en gestion." Revue Française de Gestion 45, no. 285 (November 2019): 119–34. http://dx.doi.org/10.3166/rfg.2020.00405.
Full textFoucart, Jean-Michel, Augustin Chavanne, and Jérôme Bourriau. "Intelligence artificielle : le futur de l’Orthodontie ?" Revue d'Orthopédie Dento-Faciale 53, no. 3 (September 2019): 281–94. http://dx.doi.org/10.1051/odf/2019026.
Full textEZANNO, Pauline, Sébastien PICAULT, Nathalie WINTER, Gaël BEAUNÉE, Hervé MONOD, and Jean-François GUÉGAN. "Intelligence artificielle et santé animale." INRAE Productions Animales 33, no. 2 (September 15, 2020): 95–108. http://dx.doi.org/10.20870/productions-animales.2020.33.2.3572.
Full textGrégoire, JM, C. Gilon, S. Carlier, and H. Bersini. "The potential of artificial intelligence in medical decision making." Revue Medicale de Bruxelles 43, no. 3 (2022): 265–73. http://dx.doi.org/10.30637/2022.22-013.
Full textGalland-Decker, Coralie, Pauline Brunner, Chiara Marinoni, Jeremy Jankovic, Alberto Guardia, and François Bastardot. "Santé numérique : Intelligence artificielle générative en médecine : définitions, usages et limites." Revue Médicale Suisse 21, no. 907 (2025): 404–7. https://doi.org/10.53738/revmed.2025.21.907.404.
Full textBartoli, A., E. Quarello, I. Voznyuk, and G. Gorincour. "Intelligence artificielle et imagerie en médecine fœtale : de quoi parle-t-on ?" Gynécologie Obstétrique Fertilité & Sénologie 47, no. 11 (November 2019): 765–68. http://dx.doi.org/10.1016/j.gofs.2019.09.012.
Full textDespraz, Jérémie, Antoine Garnier, Marie Méan, Julien Vaucher, Vanessa Kraege, and Peter Vollenweider. "Intelligence artificielle en médecine interne : développement d’un modèle prédictif des durées de séjour." Revue Médicale Suisse 17, no. 760 (2021): 2042–48. http://dx.doi.org/10.53738/revmed.2021.17.760.2042.
Full textLaurain, Anne. "Intelligence artificielle et big data en médecine : une nouvelle corde à notre arc ?" Hegel N° 1, no. 1 (March 1, 2022): 1. http://dx.doi.org/10.3917/heg.121.0001.
Full textDissertations / Theses on the topic "Intelligence artificielle en médecine"
Julen, Nathalie. "Eléments pour une université virtuelle en médecine : le projet CARDIOLAB." Rennes 1, 2002. http://www.theses.fr/2002REN1B063.
Full textBourgeois-République, Claire. "Plate-forme de réglage automatique et adaptatif d'implant cochléaire par algorithme évolutionnaire interactif." Dijon, 2004. http://www.theses.fr/2004DIJOS070.
Full textWolman, Frédéric. "Modèles du processus de raisonnement diagnostique : application au développement d'un système d'aide au diagnostic dans les tumeurs osseuses." Bordeaux 2, 1991. http://www.theses.fr/1991BOR23057.
Full textDrancé, Martin. "Graphes de connaissances et intelligence artificielle explicable : application au repositionnement de médicaments." Electronic Thesis or Diss., Bordeaux, 2024. https://theses.hal.science/tel-04874772.
Full textDrug repositioning involves finding new therapeutic uses for existing medications that are already approved to treat other conditions. This approach takes advantage of the existing knowledge about these molecules, enabling faster and less costly development compared to creating new drugs. Repositioning is particularly useful for addressing unmet medical needs, such as rare or emerging diseases. In recent years, the development of knowledge graphs has enabled the consolidation of all this biomedical information around drugs, coming from large data sources or knowledge repositories. A knowledge graph is a structured representation of information integrated from different sources, linking these pieces of information together using relationships. This representation is especially useful for understanding the complex relationships that structure knowledge about drugs. Nowadays, it is widely used for the task of drug repositioning. An effective way to reposition drugs using these graphs is to employ artificial intelligence (AI) methods that predict new links between objects in the graph. In this way, a well-trained model can suggest a new connection between a drug and a disease, indicating a potential opportunity for repositioning. However, this methodology has a significant disadvantage : link prediction models often provide opaque results that cannot be easily interpreted by the end users. This thesis proposes to explore the use of explainable AI methods for the purpose of repositioning drugs based on biomedical data represented in knowledge graphs. First, we analyze the impact of pre-training on multihop reasoning models for link prediction. We demonstrate that building representations of the graph entities before model training improves the predictive performance, as well as the quantity and diversity of explanations. Secondly, we examine how the addition of relationships in a knowledge graph affects link prediction results. We show that adding links in three biomedical knowledge graphs improves the predictive performance of the SQUIRE model across different types of relationships related to drug repositioning. An analysis of the impact on model explainability is also conducted, following the addition of these relationships. Finally, we propose a new methodology for the task of link classification in a knowledge graph, based on the use of random forests. Using information about the neighborhood of each node in the graph, we show that a random forest model can accurately predict the existence or absence of a link between two nodes. These results allow for a visualization of the nodes used to make the predictions. Lastly, we apply this method to drug repositioning for amyotrophic lateral sclerosis (ALS)
Ounissi, Mehdi. "Decoding the Black Box : Enhancing Interpretability and Trust in Artificial Intelligence for Biomedical Imaging - a Step Toward Responsible Artificial Intelligence." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS237.
Full textIn an era dominated by AI, its opaque decision-making --known as the "black box" problem-- poses significant challenges, especially in critical areas like biomedical imaging where accuracy and trust are crucial. Our research focuses on enhancing AI interpretability in biomedical applications. We have developed a framework for analyzing biomedical images that quantifies phagocytosis in neurodegenerative diseases using time-lapse phase-contrast video microscopy. Traditional methods often struggle with rapid cellular interactions and distinguishing cells from backgrounds, critical for studying conditions like frontotemporal dementia (FTD). Our scalable, real-time framework features an explainable cell segmentation module that simplifies deep learning algorithms, enhances interpretability, and maintains high performance by incorporating visual explanations and by model simplification. We also address issues in visual generative models, such as hallucinations in computational pathology, by using a unique encoder for Hematoxylin and Eosin staining coupled with multiple decoders. This method improves the accuracy and reliability of synthetic stain generation, employing innovative loss functions and regularization techniques that enhance performance and enable precise synthetic stains crucial for pathological analysis. Our methodologies have been validated against several public benchmarks, showing top-tier performance. Notably, our framework distinguished between mutant and control microglial cells in FTD, providing new biological insights into this unproven phenomenon. Additionally, we introduced a cloud-based system that integrates complex models and provides real-time feedback, facilitating broader adoption and iterative improvements through pathologist insights. The release of novel datasets, including video microscopy on microglial cell phagocytosis and a virtual staining dataset related to pediatric Crohn's disease, along with all source codes, underscores our commitment to transparent open scientific collaboration and advancement. Our research highlights the importance of interpretability in AI, advocating for technology that integrates seamlessly with user needs and ethical standards in healthcare. Enhanced interpretability allows researchers to better understand data and improve tool performance
Crémilleux, Bruno. "Induction automatique : aspects théoriques, le système ARBRE, applications en médecine." Phd thesis, Grenoble 1, 1991. http://tel.archives-ouvertes.fr/tel-00339492.
Full textDubuc, Antoine. "Utilisation de nouvelles approches en intelligence artificielle pour le diagnostic de lésions de la muqueuse orale." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES058.
Full textClinical manifestations of oral mucosal pathologies exhibit significant polymorphism. This includes benign dermatoses, cancerous or even pre-cancerous lesions. Early diagnosis remains a key element of management, especially for oral cavity cancers. However, this diagnosis is currently often delayed, whether due to the inherent difficulty in clinical presentation or insufficient availability of specialist consultations, leading to extended waiting times. Therefore, it appears useful to propose reliable diagnostic support tools for oral healthcare professionals. While artificial intelligence in dermatological diagnosis is advancing rapidly, its application to oral cavity pathology is still relatively limited. We adapted and evaluated various artificial intelligence approaches and developed a tool intended for healthcare professionals
Blanchard, Jean-Marc. "Modélisation de l'expertise en recherche clinique : Application à la cancérologie." Lyon, INSA, 1994. http://www.theses.fr/1994ISAL0133.
Full textThe medical field and the doctors' usual practice showed an early interest for Artificial Intelligence (A. I. ). The application presented in this piece of work tackles the question of A. I. Within the field of Clinical Research in Oncology. A full presentation of this specific field of research gives a good appreciation of the difficulties met by the clinicians within the frame of their activity. The expert programs of this application are developed to provide an aid for therapeutic decision as well as for the inclusion of patients in Clinical Studies in Oncology. The validation of the quality of the proposed decisions made by the therapeutic decision aided system led to a global result that is 85% conform to the experts proposed decisions after an initial evaluation of about 80%. We also demonstrate that it is possible to improve the expertise by simply extending it to some pathologies that were not taken into account by the initial model. Finally, on the ground of the organization of the knowledge databases that were used, and from the identification of the structuration of the therapeutic proceeding of the experts, we propose a conceptual model of this proceeding representation. This model, decomposed in 3 stages of resolution, translates the doctors expressed expertise while putting their shills in practice
Marie, Florent. "COLISEUM-3D : Une plate-forme innovante pour la segmentation d'images médicales par Raisonnement à Partir de Cas (RàPC) et méthodes d'apprentissage de type Deep Learning." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD051.
Full textNephroblastoma (or Wilms' tumor) affects the kidney and is the most common childhood abdominal cancer tumor. During therapy, it is recommended to preserve kidney function as well as possible by preserving the pathological kidney under certain conditions. The information from the imagery is important to validate them, but partly involves segmentation of the scan images. As this task is very time-consuming, it is common for this information not to be fully exploited. Artificial Intelligence (AI) represents a promising way to automate segmentations but generally requires a large amount of learning data. Among other things, Case-Based Reasoning (CBR) is a knowledge-based AI approach that integrates business knowledge and an adaptation of an existing solution to optimize the resolution of a new problem. Convolutional Neural Networks (CNNs) are a purely experiential approach. We propose a CBR system coupled with a region growing algorithm in order to segment kidneys deformed by nephroblastoma. In parallel, a training method for CNNs, called OV[exposant ]2ASSION, is also proposed for tumor segmentation. Both approaches aim to address a lack of learning data (few segmentations of nephroblastoma and pathological kidneys are available). The evaluations show good performance with the calculation of segmentations similar to those made by radiologists and surgeons
Ouédraogo, Ismaila. "Technologie mobile et intelligence artificielle pour l'amélioration de la littératie en santé dans les milieux défavorisés." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0023.
Full textAccess and use of health information is indeed a major challenge in sub-Saharan Africa, especially for populations with low literacy. These difficulties are exacerbated by the increasing prevalence of foreign language content in digital health solutions, as well as the sometimes inadequate design of these solutions for local populations. These factors must be taken into account in the development and implementation of digital health solutions to ensure that they are truly accessible and beneficial to all populations. In this context, this research focuses on improving the accessibility and use of health information (health literacy) among lowliterate populations in Burkina Faso through AI-enabled mobile health solutions. The research methodology includes literature reviews, interviews, surveys and observations to accurately understand the specific needs of low literacy users. Based on this feedback, concrete design principles will be established to guide the development of a prototype Interactive Voice Response (IVR) system in the Dioula language. The mobile service is then evaluated with users to enable iterative improvements to the solution, taking user feedback into account. In addition, this research contributes to the creation of annotated speech data in Dioula to address the lack of speech data for assistive speech technologies for the population. By highlighting the importance of local languages and adapted technologies, this study demonstrates how AI-enabled mobile health solutions can effectively overcome barriers related to literacy to improve the health literacy of marginalised populations. The findings of this study are in line with the United Nations Sustainable Development Goals (SDGs), thus reinforcing their positive impact on the health of vulnerable populations in Burkina Faso
Books on the topic "Intelligence artificielle en médecine"
Kelemen, Arpad. Computational Intelligence in Medical Informatics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Find full textAshlesha, Jain, ed. Artificial intelligence techniques in breast cancer diagnosis and prognosis. Singapore: World Scientific, 2000.
Find full textWerner, Horn, ed. Artificial intelligence in medicine: Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, AIMDM'99, Aalborg, Denmark, June 20-24, 1999 : proceedings. Berlin: Springer, 1999.
Find full textMetin, Akay, and Marsh Andy, eds. Information technologies in medicine. New York: Wiley, 2001.
Find full textBooks, Time-Life, ed. L' Intelligence artificielle. Amsterdam: Editions Time-Life, 1987.
Find full textMarie-Christine, Haton, ed. L' intelligence artificielle. Paris: Presses universitaires de France, 1989.
Find full text1948-, Evans David A., Patel Vimla L, and NATO Advanced Research Workshop on Advanced Models of Cognition for Medical Training and Practice (1991 : Barga, Italy), eds. Advanced models of cognition for medical training and practice. Berlin: Springer-Verlag, 1992.
Find full textBook chapters on the topic "Intelligence artificielle en médecine"
Citton, Yves. "Intelligence artificielle." In Angles morts du numérique ubiquitaire, 248–50. Nanterre: Presses universitaires de Paris Nanterre, 2023. http://dx.doi.org/10.4000/11tvc.
Full textCarbonnel, François, Matthieu Schuers, and David Darmon. "Perspectives numériques, intelligence artificielle." In Médecine Générale pour le Praticien, 27–34. Elsevier, 2022. http://dx.doi.org/10.1016/b978-2-294-76710-4.00005-x.
Full textTHOMAS-POHL, M., D. ROGEZ, L. BORRINI, D. AZOULAY, L. DARMON, and É. LAPEYRE. "Les genoux prothétiques." In Médecine et Armées Vol. 44 No.4, 383–88. Editions des archives contemporaines, 2016. http://dx.doi.org/10.17184/eac.6830.
Full text"Intelligence artificielle." In Taxonomie des questions juridiques liées à l’économie numérique, 5–22. United Nations, 2023. http://dx.doi.org/10.18356/9789213585061c003.
Full textPoirot, Jérôme. "Intelligence artificielle." In Dictionnaire du renseignement, 474–75. Perrin, 2018. http://dx.doi.org/10.3917/perri.mouto.2018.01.0474.
Full textNeyrat, Frédéric. "L’imagination artificielle." In Intelligence artificielle et société, 233–58. Presses de l'Université du Québec, 2024. http://dx.doi.org/10.2307/jj.12348157.14.
Full textSimon, Pierre, and Thierry Moulin. "Intelligence artificielle médicale." In Télémédecine et Télésoin, 65–75. Elsevier, 2021. http://dx.doi.org/10.1016/b978-2-294-77544-4.00012-4.
Full text"Pages de début." In Intelligence naturelle, intelligence artificielle, 1–6. Presses Universitaires de France, 1993. http://dx.doi.org/10.3917/puf.lenyj.1993.01.0001.
Full text"Pages de fin." In Intelligence naturelle, intelligence artificielle, 363–69. Presses Universitaires de France, 1993. http://dx.doi.org/10.3917/puf.lenyj.1993.01.0363.
Full textFrederiksen, Carl H., and Bruno Emond. "La représentation et le traitement cognitif du discours : le rôle des modèles formels." In Intelligence naturelle, intelligence artificielle, 165–96. Presses Universitaires de France, 1993. http://dx.doi.org/10.3917/puf.lenyj.1993.01.0165.
Full textConference papers on the topic "Intelligence artificielle en médecine"
Schmitt, Damien. "Optimisation des plans de chargement des réacteurs nucléaires d'EDF." In Intelligence artificielle : quelles perspectives pour l'énergie nucléaire. Les Ulis, France: EDP Sciences, 2018. http://dx.doi.org/10.1051/jtsfen/2018int02.
Full textSegond, Mathieu. "Potentialités et défis de l'usage du Machine Learning pour des applications critiques dans l'industrie nucléaire." In Intelligence artificielle : quelles perspectives pour l'énergie nucléaire. Les Ulis, France: EDP Sciences, 2018. http://dx.doi.org/10.1051/jtsfen/2018int03.
Full textJeanne, Ludovic. "Intégrité Académique et Intelligence Artificielle. Réflexions prospectives sur la base du cas Speedwrite." In 2ème Colloque International de Recherche et Action sur l’Intégrité Académique. « Les nouvelles frontières de l’intégrité ». IRAFPA, 2022. http://dx.doi.org/10.56240/cmb9919.
Full textAcosta-Salgado, Linda, Jean-David Daviet, and Lisa Jeanson. "Improving Web Accessibility through Artificial Intelligence: A Focus on Image Description Generation: Améliorer l'Accessibilité des Sites Web grâce à l'Intelligence Artificielle : Focus sur la Génération de Descriptions d'Images." In IHM '24: 35th International Francophone Conference on Human-Computer Interaction. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3650104.3652908.
Full textGräßler, Iris, and Alena Tušek. "Case study on the software-supported development of competences in Scenario-Technique." In 6th International Conference on Human Systems Engineering and Design Future Trends and Applications (IHSED 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005548.
Full textReports on the topic "Intelligence artificielle en médecine"
Gautrais, Vincent, Anne Tchiniaev, and Émilie Guiraud. Guide des bonnes pratiques en intelligence artificielle : sept principes pour une utilisation responsable des données. Observatoire international sur les impacts sociétaux de l'IA et du numérique, February 2023. http://dx.doi.org/10.61737/tuac9741.
Full textHulin, Anne-Sophie, Anita Burgun, Stéphanie Combes, Nathalie De Grove-Valdeyron, Caroline Guillot, Jacques Priol, Jeanne Solofrizzo, and Grimaud Valat. Entre gouvernance des données et intelligence artificielle : quelle place pour la poursuite de l'intérêt général : actes du colloque de clôture des travaux de la Chaire Justice sociale et IA. Observatoire international sur les impacts sociétaux de l'intelligence artificielle et du numérique, August 2024. http://dx.doi.org/10.61737/uiwj9558.
Full textTherrien, Marie-Christine, Joris Arnaud, Clara El Mestikawy, Julie-Maude Normandin, Geneviève Baril, Steve Jacob, Julien Laumonier, and Justin Lawarée. Six cas d’utilisation de l’intelligence artificielle dans le secteur public : note de recherche. Observatoire international sur les impacts sociétaux de l'IA et du numérique, January 2020. http://dx.doi.org/10.61737/qjkh1812.
Full textAudet, René, and Tom Lebrun. Livre blanc : L'intelligence artificielle et le monde du livre. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, September 2020. http://dx.doi.org/10.61737/zhxd1856.
Full textMcAdams-Roy, Kassandra, Philippe Després, and Pierre-Luc Déziel. La gouvernance des données dans le domaine de la santé : Pour une fiducie de données au Québec ? Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, February 2023. http://dx.doi.org/10.61737/nrvw8644.
Full textGentelet, Karine, and Alexandra Bahary-Dionne. Les angles morts des réponses technologiques à la pandémie de COVID-19 : Disjonction entre les inégalités en santé et numériques structurantes de la marginalisation de certaines populations. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, September 2020. http://dx.doi.org/10.61737/gsjs3130.
Full textGautrais, Vincent, and Nicolas Aubin. Assessment Model of Factors Relating to Data Flow: Instrument for the Protection of Privacy as well as Rights and Freedoms in the Development and Use of Artificial Intelligence. Observatoire international sur les impacts sociétaux de l'intelligence artificielle et du numérique, March 2022. http://dx.doi.org/10.61737/haoj6662.
Full textMörch, Carl-Maria, Pascale Lehoux, Marc-Antoine Dilhac, Catherine Régis, and Xavier Dionne. Recommandations pratiques pour une utilisation responsable de l’intelligence artificielle en santé mentale en contexte de pandémie. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, December 2020. http://dx.doi.org/10.61737/mqaf7428.
Full textGobeil-Proulx, Julien. Recension des besoins en compétences suscités par le développement et la mise en oeuvre de l'IA. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, 2021. http://dx.doi.org/10.61737/hsuj4131.
Full textRousseau, Henri-Paul. Gutenberg, L’université et le défi numérique. CIRANO, December 2022. http://dx.doi.org/10.54932/wodt6646.
Full text