Academic literature on the topic 'Intention Recognition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intention Recognition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intention Recognition"
Mazzone, Marco. "Pragmatics and Cognition: Intentions and Pattern Recognition in Context." International Review of Pragmatics 1, no. 2 (2009): 321–47. http://dx.doi.org/10.1163/187730909x12535267111615.
Full textHan, The Anh, Luís Moniz Pereira, and Francisco C. Santos. "Corpus-Based Intention Recognition in Cooperation Dilemmas." Artificial Life 18, no. 4 (October 2012): 365–83. http://dx.doi.org/10.1162/artl_a_00072.
Full textPeng, Minjing, Yanwei Qin, Chenxin Tang, and Xiangming Deng. "An E-Commerce Customer Service Robot Based on Intention Recognition Model." Journal of Electronic Commerce in Organizations 14, no. 1 (January 2016): 34–44. http://dx.doi.org/10.4018/jeco.2016010104.
Full textAhmed, Abdulghani Ali. "Investigation Approach for Network Attack Intention Recognition." International Journal of Digital Crime and Forensics 9, no. 1 (January 2017): 17–38. http://dx.doi.org/10.4018/ijdcf.2017010102.
Full textCao, Guoxiang, Anlin Wang, and Donghuan Xu. "Wheel Loader Driving Intention Recognition with Gaussian Mixture - Hidden Markov Model." MATEC Web of Conferences 237 (2018): 03001. http://dx.doi.org/10.1051/matecconf/201823703001.
Full textYue, Shi-guang, Peng Jiao, Ya-bing Zha, and Quan-jun Yin. "A Logical Hierarchical Hidden Semi-Markov Model for Team Intention Recognition." Discrete Dynamics in Nature and Society 2015 (2015): 1–19. http://dx.doi.org/10.1155/2015/975951.
Full textSchlenoff, Craig, Zeid Kootbally, Anthony Pietromartire, Marek Franaszek, and Sebti Foufou. "Intention recognition in manufacturing applications." Robotics and Computer-Integrated Manufacturing 33 (June 2015): 29–41. http://dx.doi.org/10.1016/j.rcim.2014.06.007.
Full textMghabghab, Serge, Imad H. Elhajj, and Daniel Asmar. "Personalized teleoperation via intention recognition." Advanced Robotics 32, no. 13 (April 23, 2018): 697–716. http://dx.doi.org/10.1080/01691864.2018.1460619.
Full textGregoromichelaki, Eleni, Ruth Kempson, Matthew Purver, Gregory J. Mills, Ronnie Cann, Wilfried Meyer-Viol, and Patrick G. T. Healey. "Incrementality and intention-recognition in utterance processing." Dialogue & Discourse 2, no. 1 (May 3, 2011): 199–233. http://dx.doi.org/10.5087/dad.2011.109.
Full textde Clercq, P., J. van den Herik, A. Hasman, and A. Latoszek-Berendsen. "Intention-based Expressions in GASTINE." Methods of Information in Medicine 48, no. 04 (2009): 391–96. http://dx.doi.org/10.3414/me0591.
Full textDissertations / Theses on the topic "Intention Recognition"
Akridge, Cameron. "Intention Recognition in a Strategic Environment." Honors in the Major Thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/736.
Full textBachelors
Engineering and Computer Science
Computer Engineering
Aarno, Daniel. "Intention recognition in human machine collaborative systems." Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4303.
Full textRobotsystem har använts flitigt under de senaste årtiondena för att skapa automationslösningar i ett flertal områden. De flesta nuvarande automationslösningarna är begränsade av att uppgifterna de kan lösa måste vara repetitiva och förutsägbara. En av anledningarna till detta är att dagens robotsystem saknar förmåga att förstå och resonera om omvärlden. På grund av detta har forskare inom robotik och artificiell intelligens försökt att skapa intelligentare maskiner. Trots att stora framsteg har gjorts då det gäller att skapa robotar som kan fungera och interagera i en mänsklig miljö så finns det för nuvarande inget system som kommer i närheten av den mänskliga förmågan att resonera om omvärlden.
För att förenkla problemet har vissa forskare föreslagit en alternativ lösning till helt självständiga robotar som verkar i mänskliga miljöer. Alternativet är att kombinera människors och maskiners förmågor. Exempelvis så kan en person verka på en avlägsen plats, som kanske inte är tillgänglig för personen i fråga på grund av olika orsaker, genom att använda fjärrstyrning. Vid fjärrstyrning skickar operatören kommandon till en robot som verkar som en förlängning av operatörens egen kropp.
Segmentering och identifiering av rörelser skapade av en operatör kan användas för att tillhandahålla korrekt assistans vid fjärrstyrning eller samarbete mellan människa och maskin. Assistansen sker ofta inom ramen för virtuella fixturer där eftergivenheten hos fixturen kan justeras under exekveringen för att tillhandahålla ökad prestanda i form av ökad precision och minskad tid för att utföra uppgiften.
Den här avhandlingen fokuserar på två aspekter av samarbete mellan människa och maskin. Klassificering av en operatörs rörelser till ett på förhand specificerat tillstånd under en manipuleringsuppgift och assistans under manipuleringsuppgiften baserat på virtuella fixturer. Den specifika tillämpningen som behandlas är manipuleringsuppgifter där en mänsklig operatör styr en robotmanipulator i ett fjärrstyrt eller samarbetande system.
En metod för att följa förloppet av en uppgift medan den utförs genom att använda virtuella fixturer presenteras. Istället för att följa en på förhand specificerad plan så har operatören möjlighet att undvika oväntade hinder och avvika från modellen. För att möjliggöra detta estimeras kontinuerligt sannolikheten att operatören följer en viss trajektorie (deluppgift). Estimatet används sedan för att justera eftergivenheten hos den virtuella fixturen så att ett beslut om hur rörelsen ska fixeras kan tas medan uppgiften utförs.
En flerlagers dold Markovmodell (eng. layered hidden Markov model) används för att modellera mänskliga färdigheter. En gestemklassificerare som klassificerar en operatörs rörelser till olika grundläggande handlingsprimitiver, eller gestemer, evalueras. Gestemklassificerarna används sedan i en flerlagers dold Markovmodell för att modellera en simulerad fjärrstyrd manipuleringsuppgift. Klassificeringsprestandan utvärderas med avseende på brus, antalet gestemer, typen på den dolda Markovmodellen och antalet tillgängliga träningssekvenser. Den flerlagers dolda Markovmodellen tillämpas sedan på data från en trajektorieföljningsuppgift i 2D och 3D med en robotmanipulator för att ge både kvalitativa och kvantitativa resultat. Resultaten tyder på att den flerlagers dolda Markovmodellen är väl lämpad för att modellera trajektorieföljningsuppgifter och att den flerlagers dolda Markovmodellen är robust med avseende på felklassificeringar i de underliggande gestemklassificerarna.
Robot systems have been used extensively during the last decades to provide automation solutions in a number of areas. The majority of the currently deployed automation systems are limited in that the tasks they can solve are required to be repetitive and predicable. One reason for this is the inability of today’s robot systems to understand and reason about the world. Therefore the robotics and artificial intelligence research communities have made significant research efforts to produce more intelligent machines. Although significant progress has been made towards achieving robots that can interact in a human environment there is currently no system that comes close to achieving the reasoning capabilities of humans.
In order to reduce the complexity of the problem some researchers have proposed an alternative to creating fully autonomous robots capable of operating in human environments. The proposed alternative is to allow fusion of human and machine capabilities. For example, using teleoperation a human can operate at a remote site, which may not be accessible for the operator for a number of reasons, by issuing commands to a remote agent that will act as an extension of the operator’s body.
Segmentation and recognition of operator generated motions can be used to provide appropriate assistance during task execution in teleoperative and human-machine collaborative settings. The assistance is usually provided in a virtual fixture framework where the level of compliance can be altered online in order to improve the performance in terms of execution time and overall precision. Acquiring, representing and modeling human skills are key research areas in teleoperation, programming-by-demonstration and human-machine collaborative settings. One of the common approaches is to divide the task that the operator is executing into several sub-tasks in order to provide manageable modeling.
This thesis is focused on two aspects of human-machine collaborative systems. Classfication of an operator’s motion into a predefined state of a manipulation task and assistance during a manipulation task based on virtual fixtures. The particular applications considered consists of manipulation tasks where a human operator controls a robotic manipulator in a cooperative or teleoperative mode.
A method for online task tracking using adaptive virtual fixtures is presented. Rather than executing a predefined plan, the operator has the ability to avoid unforeseen obstacles and deviate from the model. To allow this, the probability of following a certain trajectory sub-task) is estimated and used to automatically adjusts the compliance of a virtual fixture, thus providing an online decision of how to fixture the movement.
A layered hidden Markov model is used to model human skills. A gestem classifier that classifies the operator’s motions into basic action-primitives, or gestemes, is evaluated. The gestem classifiers are then used in a layered hidden Markov model to model a simulated teleoperated task. The classification performance is evaluated with respect to noise, number of gestemes, type of the hidden Markov model and the available number of training sequences. The layered hidden Markov model is applied to data recorded during the execution of a trajectory-tracking task in 2D and 3D with a robotic manipulator in order to give qualitative as well as quantitative results for the proposed approach. The results indicate that the layered hidden Markov model is suitable for modeling teleoperative trajectory-tracking tasks and that the layered hidden Markov model is robust with respect to misclassifications in the underlying gestem classifiers.
Aarno, Daniel K. E. "Intention recognition in human machine collaborative systems /." Stockholm : KTH, School of Computer Science and Communication, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4303.
Full textAkridge, Cameron. "ON ADVANCED TEMPLATE-BASED INTERPRETATION AS APPLIED TO INTENTION RECOGNITION IN A STRATEGIC ENVIRONMENT." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4106.
Full textM.S.Cp.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Engineering
Cruz, Gabriel M. Eng Massachusetts Institute of Technology. "Solving Dec-MDPs with options and intention recognition." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106028.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 31-32).
In this thesis, we designed and implemented an algorithm to find approximate solutions to multi-agent systems. We model the problems with a Decentralized Markov Decision Process, and we make use of options and intention recognition to solve the problem. Rather than directly solving the Dec-MDP, which is NEXP-Complete, we instead solve a set of single-agent MDPs, that we can solve in P-Complete, and combine these solutions during execution time. We tested our algorithm on several instances of the Bribed Package Retrieval Problem and we were able to handle problems as large as our MDP solver would allow, which is a big improvement over what optimal Dec-MDP solvers can handle.
by Gabriel Cruz.
M. Eng. in Computer Science and Engineering
Duncan, Kester. "Scene-Dependent Human Intention Recognition for an Assistive Robotic System." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5009.
Full textElzer, Stephanie. "A probabilistic framework for the recognition of intention in information graphics." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 0.70 Mb., 223 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200529.
Full textHan, The Anh. "Intention recognition, commitment and their roles in the evolution of cooperation." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8784.
Full textThe goal of this thesis is twofold. First, intention recognition is studied from an Arti cial Intelligence (AI) modeling perspective. We present a novel and e cient intention recognition method that possesses several important features: (i) The method is context-dependent and incremental, enabled by incrementally constructing a three-layer Bayesian network model as more actions are observed, and in a context-dependent manner, relying on a logic programming knowledge base concerning the context; (ii) The Bayesian network is composed from a knowledge base of readily speci ed and readily maintained Bayesian network fragments with simple structures, enabling an e cient acquisition of the corresponding knowledge base (either from domain experts or else automatically from a plan corpus); and, (iii) The method addresses the issue of intention change and abandonment, and can appropriately resolve the issue of multiple intentions recognition. Several aspects of the method are evaluated experimentally, achieving some de nite success. Furthermore, on top of the intention recognition method, a novel framework for intention-based decision making is provided, illustrating several ways in which an ability to recognize intentions of others can enhance a decision making process. A second subgoal of the thesis concerns that, whereas intention recognition has been extensively studied in small scale interactive settings, there is a major shortage of modeling research with respect to large scale social contexts, namely evolutionary roles and aspects of intention recognition. Employing our intention recognition method and the tools of evolutionary game theory, this thesis explicitly addresses the roles played by intention recognition in the nal outcome of cooperation in large populations of self-regarding individuals. By equipping individuals with the capacity for assessing intentions of others in the course of social dilemmas, we show how intention recognition is selected by natural selection, opening a window of opportunity for cooperation to thrive, even in hard cooperation prone games like the Prisoner's Dilemma. In addition, there are cases where it is di cult, if not impossible, to recognize the intentions of another agent. In such cases, the strategy of proposing commitment, or of intention manifestation, can help to impose or clarify the intentions of others. Again using the tools of evolutionary game theory, we show that a simple form of commitment can lead to the emergence of cooperation; furthermore, the combination of commitment with intention recognition leads to a strategy better than either one by itself. How the thesis should be read? We recommend that the thesis be read sequentially, chapter by chapter [1-2-3-4-5-6-7-8]. However, for those more interested in intention recognition from the AI modeling perspective, i.e. the rst subgoal of the thesis, Chapters 6 and 7 can be omitted and Chapters 4 and 5 are optional [1-2-3-(4)-(5)-8]. In addition, for those more keen on the problem of the evolution of cooperation, i.e. the second subgoal of thesis, Chapter 3 and even Chapter 2, can be omitted [1-(2)-4-5-6-7-8].
Fundação para a Ciência e Tecnologia - PhD grant (ref. SFRH/BD/62373/2009)
Awais, Muhammad [Verfasser], and Dominik [Akademischer Betreuer] Henrich. "Intuitive Human-Robot Interaction by Intention Recognition / Muhammad Awais. Betreuer: Dominik Henrich." Bayreuth : Universität Bayreuth, 2013. http://d-nb.info/1059353644/34.
Full textKhokar, Karan Hariharan. "Human Intention Recognition Based Assisted Telerobotic Grasping of Objects in an Unstructured Environment." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4909.
Full textBooks on the topic "Intention Recognition"
Kiefer, Peter. Mobile Intention Recognition. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1854-2.
Full textHan, The Anh. Intention Recognition, Commitment and Their Roles in the Evolution of Cooperation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37512-5.
Full textHan, The Anh. Intention Recognition, Commitment and Their Roles in the Evolution of Cooperation: From Artificial Intelligence Techniques to Evolutionary Game Theory Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textBoffo, Vanna, Sabina Falconi, and Tamara Zappaterra, eds. Per una formazione al lavoro. Florence: Firenze University Press, 2012. http://dx.doi.org/10.36253/978-88-6655-304-5.
Full textPlan, Activity, and Intent Recognition: Theory and Practice. Elsevier Science & Technology Books, 2014.
Find full textSukthankar, Gita, Hung Bui, Christopher W. Geib, and David V. Pynadath. Plan, Activity, and Intent Recognition: Papers from the AAAI Workshop. AAAI Press, 2011.
Find full textSukthankar, Gita, Christopher Geib, Hung Bui, and David Pynadath. Plan, Activity, and Intent Recognition: Papers from the AAAI Workshop. AAAI Press, 2010.
Find full textBook chapters on the topic "Intention Recognition"
te Vrugt, Jürgen, and Thomas Portele. "Intention Recognition." In SmartKom: Foundations of Multimodal Dialogue Systems, 285–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-36678-4_19.
Full textKiefer, Peter. "Mobile Intention Recognition." In Mobile Intention Recognition, 11–53. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1854-2_2.
Full textKiefer, Peter. "Introduction." In Mobile Intention Recognition, 1–9. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1854-2_1.
Full textKiefer, Peter. "Related Approaches in Plan Recognition." In Mobile Intention Recognition, 55–78. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1854-2_3.
Full textKiefer, Peter. "Mobile Intention Recognition with Spatially Constrained Grammars." In Mobile Intention Recognition, 79–126. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1854-2_4.
Full textKiefer, Peter. "Evaluation and Discussion." In Mobile Intention Recognition, 127–44. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1854-2_5.
Full textKiefer, Peter. "Conclusion and Outlook." In Mobile Intention Recognition, 145–54. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1854-2_6.
Full textHan, The Anh. "Incremental Intention Recognition." In Studies in Applied Philosophy, Epistemology and Rational Ethics, 17–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37512-5_2.
Full textHan, The Anh. "Context-Dependent Intention Recognition." In Studies in Applied Philosophy, Epistemology and Rational Ethics, 35–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37512-5_3.
Full textTanenhaus, Michael K., Chigusa Kurumada, and Meredith Brown. "Prosody and Intention Recognition." In Studies in Theoretical Psycholinguistics, 99–118. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12961-7_6.
Full textConference papers on the topic "Intention Recognition"
Berg-Cross, Gary, and Christopher Crick. "Intentions and intention recognition in intelligent agents." In the 10th Performance Metrics for Intelligent Systems Workshop. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/2377576.2377623.
Full textAnwar, Suzan, Mariofanna Milanova, Andrea Bigazzi, Leonardo Bocchi, and Andrea Guazzini. "Real time intention recognition." In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7794016.
Full textWang, Shoujin, Liang Hu, Yan Wang, Quan Z. Sheng, Mehmet Orgun, and Longbing Cao. "Intention2Basket: A Neural Intention-driven Approach for Dynamic Next-basket Planning." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/323.
Full textLiu, Xuan, Meijing Zhao, Song Dai, Qiyue Yin, and Wancheng Ni. "Tactical Intention Recognition in Wargame." In 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). IEEE, 2021. http://dx.doi.org/10.1109/icccs52626.2021.9449256.
Full textWang, Yiwei, Yixuan Sheng, Ji Wang, and Wenlong Zhang. "Human Intention Estimation With Tactile Sensors in Human-Robot Collaboration." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5291.
Full textAarno, Daniel, and Danica Kragic. "Layered HMM for Motion Intention Recognition." In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iros.2006.282606.
Full textSadri, Fariba. "Intention Recognition with Event Calculus Graphs." In 2010 IEEE/ACM International Conference on Web Intelligence-Intelligent Agent Technology (WI-IAT). IEEE, 2010. http://dx.doi.org/10.1109/wi-iat.2010.83.
Full textThill, Serge, Alberto Montebelli, and Tom Ziemke. "Workshop on intention recognition in HRI." In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2016. http://dx.doi.org/10.1109/hri.2016.7451868.
Full textNilsson, Julia, Jonas Fredriksson, and Erik Coelingh. "Rule-Based Highway Maneuver Intention Recognition." In 2015 IEEE 18th International Conference on Intelligent Transportation Systems - (ITSC 2015). IEEE, 2015. http://dx.doi.org/10.1109/itsc.2015.159.
Full textKim, Sangwook, Zhibin Yu, Jonghong Kim, Amitash Ojha, and Minho Lee. "Human-Robot Interaction using Intention Recognition." In HAI 2015: The Third International Conference on Human-Agent Interaction. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2814940.2815002.
Full text