Academic literature on the topic 'Inter-cellular Interference'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inter-cellular Interference.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Inter-cellular Interference"

1

Wang, Yafeng, Guoxing Wei, and Wei Xiang. "Inter-cell interference modeling for cellular networks." Telecommunication Systems 53, no. 1 (May 2013): 99–105. http://dx.doi.org/10.1007/s11235-013-9682-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

WANG, Ya-feng, Guo-xing WEI, and Wei XIANG. "Approximate inter-cell interference modeling for cellular network." Journal of China Universities of Posts and Telecommunications 18, no. 3 (June 2011): 75–79. http://dx.doi.org/10.1016/s1005-8885(10)60066-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Sheng-dong, and Meng Wu. "Analysis of Inter-cell Interference in Multimedia Cellular CDMA." Journal of Electronics & Information Technology 30, no. 5 (March 14, 2011): 1159–62. http://dx.doi.org/10.3724/sp.j.1146.2006.01616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Zihan, and Guanding Yu. "FdICIC: Inter-cell Interference Coordination for Full-Duplex Cellular Systems." Wireless Personal Communications 101, no. 1 (May 14, 2018): 1–22. http://dx.doi.org/10.1007/s11277-018-5627-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jung, Sun-Young, Do-Hoon Kwon, Se-Hoon Yang, and Sang-Kook Han. "Inter-cell interference mitigation in multi-cellular visible light communications." Optics Express 24, no. 8 (April 11, 2016): 8512. http://dx.doi.org/10.1364/oe.24.008512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tianmin Ren and R. J. La. "Downlink beamforming algorithms with inter-cell interference in cellular networks." IEEE Transactions on Wireless Communications 5, no. 10 (October 2006): 2814–23. http://dx.doi.org/10.1109/twc.2006.04580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Yuan-ping, Jing Xu, Yang Yang, and Jiang Wang. "Statistical Analysis of the Uplink Inter-cell Interference for Cellular Systems." Journal of Electronics & Information Technology 35, no. 8 (February 25, 2014): 1971–76. http://dx.doi.org/10.3724/sp.j.1146.2012.01613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xuefei, Xiaofeng Tao, Qimei Cui, and Juan Bai. "Intra‐cell and inter‐cell interference‐constrained D2D communication underlaying cellular networks." Electronics Letters 51, no. 14 (July 2015): 1117–19. http://dx.doi.org/10.1049/el.2015.0197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sciancalepore, Vincenzo, Ilario Filippini, Vincenzo Mancuso, Antonio Capone, and Albert Banchs. "A Multi-Traffic Inter-Cell Interference Coordination Scheme in Dense Cellular Networks." IEEE/ACM Transactions on Networking 26, no. 5 (October 2018): 2361–75. http://dx.doi.org/10.1109/tnet.2018.2866410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ullah, Rahat, Fahim Ullah, Zubair Khalid, and Hashim Safdar. "A REVIEW OF INTER CELL INTERFERENCE MANAGEMENT IN REGULAR AND IRREGULAR GEOMETRY CELLULAR NETWORKS." Jurnal Teknologi 83, no. 5 (August 1, 2021): 45–56. http://dx.doi.org/10.11113/jurnalteknologi.v83.16866.

Full text
Abstract:
This paper reviews the inter-cell interference (ICI) mitigation approaches in the OFDMA based multicellular networks with more emphasis on the frequency reused based ICI coordination schemes in the downlink systems. The geometry of the network severely affects the Signal to Interference and Noise Ratio (SINR); therefore, the wireless cellular systems are strongly dependent on the spatial BSs configuration and topology of a network. ICI mitigation techniques for both regular and irregular geometry networks are analyzed and a qualitative comparison along with the future research directions are presented.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Inter-cellular Interference"

1

Kosta, Chrysovalantis. "Inter-cell interference coordination in multi-cellular networks." Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606702.

Full text
Abstract:
OFDMA is accepted as the most appropriate air-interface for 4G OFDMA based systems by both researchers in industry and academia. A major problem that arises in OFDMA based systems is inter-cell interference that stems from aggressive frequency reuse and is particularly worse in cell-edge areas. Therefore, Inter-Cell Interference Coordination (ICIC) has been proposed as a promising method to mitigate inter-cell interference (ICI) mainly in the overlapping (cell-edge) areas of a multi-cell cellular network. The main objectives of this thesis are to investigate inter-cell interference in a heterogeneous system comprising of both macro and femto cells, propose and evaluate less complex novel inter-cell interference coordination/avoidance techniques that increase both cell-edge throughput and overall cell throughput. Initially, our scenario focuses on the investigation of co-channel interference in macrocell deployments. In this direction, we propose a static ICIC technique for OFDMA macrocell networks based on cyclic difference sets a branch of combinatorial mathematics to minimize the inter-cell interference. Then, we formulate the dynamic ICIC problem in a linear way in order to minimize the complexity issues with the scalability of the problem. We show that with minimal loss of optimality, this linear problem can be simplified into two smaller problems i.e. the multi-user scheduling (base station) problem and the multi-cell scheduling (network) problem. Simulation results confirm the increased effectiveness of proposed ICIC schemes in both metrics (i.e. cell-edge and total cell throughput) over a number of state-of-the-art (static and dynamic) interference avoidance schemes. After, the ICIC technique is optimized to minimize the total transmit power by employing inter-cell and intra-cell power control without compromising the cell-edge throughput. Here, we formulate the multi-objective problem as a multi-dimensional knapsack problem. Our simulation results of the proposed scheme show its increased energy efficiency and user fairness compared with the state-of-the-art energy efficient schemes. Finally, the complexity of the ICIC problem and the need of a centralised controller are further reduced in order to benefit small-cell deployments. Here, it is shown that the complexity of the ICIC version can be further reduced by employing a dual decomposition method from optimization theory. Extensive simulation results show a significant improvement of the proposed scheme compared with some distributed reference schemes in terms of cell-edge and total cell throughput and thus it is a promising candidate for next generation mobile systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Plass, Simon. "Cellular MC-CDMA downlink systems coordination, cancellation, and use of inter-cell interference." Düsseldorf VDI-Verl, 2008. http://d-nb.info/990760375/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trabelsi, Nessrine. "A Game Theoretic Framework for User Association & Inter-cell Interference Management in LTE Cellular Networks." Thesis, Avignon, 2016. http://www.theses.fr/2016AVIG0215/document.

Full text
Abstract:
Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé
Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented
APA, Harvard, Vancouver, ISO, and other styles
4

Aziz, Danish [Verfasser], and Joachim [Akademischer Betreuer] Speidel. "Un-coordinated multi-user and inter-cell interference alignment based on partial and outdated information for large cellular networks / Danish Aziz ; Betreuer: Joachim Speidel." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2016. http://d-nb.info/1118369572/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haldar, Kuheli L. Ph D. "Efficient Quality of Service Provision Techniques in Next Generation Wireless Networks." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1397235725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Chih-Ming, and 胡智明. "Inter Cell Interference mitigation in OFDMA cellular system." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/57615618868533478076.

Full text
Abstract:
碩士
國立中央大學
通訊工程研究所碩士在職專班
98
With the fast development of the wireless communications, the requirement of faster transmission rate has also increased rapidly. The OFDMA technology is considered as a promising candidate for the downlink interface of the next generation wireless systems. However, inter cell interference is an impediment of the throughput performance in the system, especially for Cell Edge Users(CEUs).The main goal is to improve the CEU throughput as well as overall cell throughput. In this thesis, we propose a flexible softer frequency reuse scheme. Several schemes on inter cell interference coordination have been suggested for OFDMA systems. Our algorithm is designed to improve the CEU throughput by optimizing the reuse factor、power factor and packet scheduler priority. From the simulation result, the proposed algorithm can increase the CEU throughput effectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Xia, Ping. "Interference management in heterogeneous cellular networks." 2012. http://hdl.handle.net/2152/19584.

Full text
Abstract:
Heterogeneous cellular networks (HCNs) – comprising traditional macro base stations (BSs) and heterogeneous infrastructure such as microcells, picocells, femtocells and distributed antennas – are fast becoming a cost-effective and essential way of handling explosive wireless data traffic demands. Up until now, little basic research has been done on the fundamentals of managing so much infrastructure – much of it unplanned – together with the carefully planned macro-cellular network. This dissertation addresses the key technical challenges of inter-cell interference management in this new network paradigm. This dissertation first studies uplink femtocell access control in uncoordinated two-tier networks, i.e. where the femtocells cannot coordinate with macrocells. Closed access allows registered home users to monopolize their own femtocell and its backhaul connection, but also results in severe interference between femtocells and nearby unregistered macro users. Open access reduces such interference by handing over such users, at the expense of femtocell resource sharing. In the first analytical work on this topic, we studied the best femtocell access technique from the perspectives of both network operators and femtocell owners, and show that it is strongly contingent on parameters such as multiple access schemes (i.e. orthogonal vs. non- orthogonal) and cellular user density (in TDMA/OFDMA). To study coordinated algorithms whose success depends heavily on the rate and delay (vs. user mobility) of inter-cell overhead sharing, this dissertation develops various models of overhead signaling in general HCNs and derives the overhead quality contour – the achievable set of overhead packet rate and delay – under general assumptions on overhead arrivals and different overhead signaling methods (backhaul and/or wireless). The overhead quality contour is further simplified for two widely used models of overhead arrivals: Poisson and deterministic. Based on the overhead quality contour that is applicable to generic coordinated techniques, this dissertation develops a novel analytical framework to evaluate downlink coordinated multi-point (CoMP) schemes in HCNs. Combined with the signal-to-interference-plus-noise-ratio (SINR) characterization, this framework can be used for a class of CoMP schemes without user data sharing. As an example, we apply it to downlink CoMP inter-cell interference cancellation (ICIC), after deriving SINR results for it using the spatial Poisson Point Process (PPP) to capture the uncertainty in base station locations.
text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Inter-cellular Interference"

1

Jain, Ranjan Bala. "On Downlink Inter Cell Interference Modeling in Cellular OFDMA Networks." In Communications in Computer and Information Science, 377–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22786-8_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

González G, David, Mario García-Lozano, Silvia Ruiz, and Joan Olmos. "On the Performance of Static Inter-cell Interference Coordination in Realistic Cellular Layouts." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 163–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21444-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Sai Ho, and Zander Zhongding Lei. "Inter-Cell Interference Management for Heterogeneous Networks." In Heterogeneous Cellular Networks, 93–117. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118555262.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmed, Furqan, Alexis A. Dowhuszko, and Olav Tirkkonen. "Network Optimization Methods for Self-Organization of Future Cellular Networks." In Advances in Wireless Technologies and Telecommunication, 35–65. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0239-5.ch002.

Full text
Abstract:
This chapter discusses network optimization methods for enabling self-organization in current cellular networks such as Long Term Evolution (LTE)/LTE-Advanced (LTE-A), and the upcoming 5G networks. Discrete and continuous optimization models are discussed for developing distributed algorithms for self-configuration and self-optimization. The focus is on Self-Organized Networking (SON) problems, which are relevant to small cell networks. Examples include Physical Cell-ID (PCI) assignment, Primary Component Carrier (PCC) selection, Inter-Cell Interference Coordination (ICIC), and network synchronization. A conflict-graph model is considered for PCI assignment and PCC selection problems, which paves the way for different graph coloring algorithms with self-organizing properties. Algorithms for self-organized ICIC and network synchronization are also developed in a principled manner, through a network utility maximization framework. This systematic approach leads to a variety of algorithms which adhere to self-organization principles, but have varying requirements in terms of inter-cell coordination and computation complexity. Fully distributed self-organizing algorithms do not involve any inter-cell dedicated message-passing, and thus are faster and more scalable than the ones that are distributed but require local coordination via exchange of messages between cells. However, local coordination enables higher network utility and better convergence properties.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Inter-cellular Interference"

1

Wei, Haichao, Na Deng, and Martin Haenggi. "Inter-Cell Interference Coordination in Millimeter-Wave Cellular Networks." In GLOBECOM 2019 - 2019 IEEE Global Communications Conference. IEEE, 2019. http://dx.doi.org/10.1109/globecom38437.2019.9013992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lafuente-Martinez, Javier, Angela Hernandez-Solana, Israel Guio, and Antonio Valdovinos. "Inter-Cell Interference Management in SC-FDMA Cellular Systems." In 2011 IEEE Vehicular Technology Conference (VTC 2011-Spring). IEEE, 2011. http://dx.doi.org/10.1109/vetecs.2011.5956184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Osterbo, Olav, and Ole Grondalen. "Comparison of inter-cell interference models for cellular networks." In 2014 European Conference on Networks and Communications (EuCNC). IEEE, 2014. http://dx.doi.org/10.1109/eucnc.2014.6882633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mori, Shota, Keiichi Mizutani, and Hiroshi Harada. "Inter-User Interference Reduction Applying Successive Interference Cancellation for Dynamic-duplex Cellular System." In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). IEEE, 2021. http://dx.doi.org/10.1109/vtc2021-spring51267.2021.9449069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qingtian Xue, Bo Li, Xiaoya Zuo, Zhongjiang Yan, and Mao Yang. "Cell capacity for 5G cellular network with inter-beam interference." In 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). IEEE, 2016. http://dx.doi.org/10.1109/icspcc.2016.7753608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lagen, Sandra, Adrian Agustin, and Josep Vidal. "Distributed inter-cluster interference management for CoMP-based cellular networks." In 2013 IEEE Global Communications Conference (GLOBECOM 2013). IEEE, 2013. http://dx.doi.org/10.1109/glocom.2013.6831733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aziz, Danish, Mustansir Mazhar, and Andreas Weber. "Multi User Inter Cell Interference Alignment in Heterogeneous Cellular Networks." In 2014 IEEE Vehicular Technology Conference (VTC 2014-Spring). IEEE, 2014. http://dx.doi.org/10.1109/vtcspring.2014.7022994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Ying, Guizhu Wang, Lianhai Shan, Zhi Yuan, and Yuling Ouyang. "Inter-piconet interference mitigation schemes for converged BTLE and cellular network." In Signal Processing (WCSP 2011). IEEE, 2011. http://dx.doi.org/10.1109/wcsp.2011.6096748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tian, Hui, Fan Jiang, Xijun Wang, Xiaoying Tang, and Jietao Zhang. "An Inter-Cell Interference Coordination Scheme for Relay Based Cellular Networks." In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2009. http://dx.doi.org/10.1109/wicom.2009.5304579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Georgiev, K., and D. C. Dimitrova. "Impact of relaying on inter-cell interference in mobile cellular networks." In 2010 European Wireless Conference (EW). IEEE, 2010. http://dx.doi.org/10.1109/ew.2010.5483504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography