To see the other types of publications on this topic, follow the link: Interaction Env/CD4.

Journal articles on the topic 'Interaction Env/CD4'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Interaction Env/CD4.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Douagi, Iyadh, Mattias N. E. Forsell, Christopher Sundling, Sijy O'Dell, Yu Feng, Pia Dosenovic, Yuxing Li, et al. "Influence of Novel CD4 Binding-Defective HIV-1 Envelope Glycoprotein Immunogens on Neutralizing Antibody and T-Cell Responses in Nonhuman Primates." Journal of Virology 84, no. 4 (December 2, 2009): 1683–95. http://dx.doi.org/10.1128/jvi.01896-09.

Full text
Abstract:
ABSTRACT The high-affinity in vivo interaction between soluble HIV-1 envelope glycoprotein (Env) immunogens and primate CD4 results in conformational changes that alter the immunogenicity of the gp120 subunit. Because the conserved binding site on gp120 that directly interacts with CD4 is a major vaccine target, we sought to better understand the impact of in vivo Env-CD4 interactions during vaccination. Rhesus macaques were immunized with soluble wild-type (WT) Env trimers, and two trimer immunogens rendered CD4 binding defective through distinct mechanisms. In one variant, we introduced a mutation that directly disrupts CD4 binding (368D/R). In the second variant, we introduced three mutations (423I/M, 425N/K, and 431G/E) that disrupt CD4 binding indirectly by altering a gp120 subdomain known as the bridging sheet, which is required for locking Env into a stable interaction with CD4. Following immunization, Env-specific binding antibody titers and frequencies of Env-specific memory B cells were comparable between the groups. However, the quality of neutralizing antibody responses induced by the variants was distinctly different. Antibodies against the coreceptor binding site were elicited by WT trimers but not the CD4 binding-defective trimers, while antibodies against the CD4 binding site were elicited by the WT and the 423I/M, 425N/K, and 431G/E trimers but not the 368D/R trimers. Furthermore, the CD4 binding-defective trimer variants stimulated less potent neutralizing antibody activity against neutralization-sensitive viruses than WT trimers. Overall, our studies do not reveal any potential negative effects imparted by the in vivo interaction between WT Env and primate CD4 on the generation of functional T cells and antibodies in response to soluble Env vaccination.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Qingbo, Peng Zhang, and Paolo Lusso. "Quaternary Interaction of the HIV-1 Envelope Trimer with CD4 and Neutralizing Antibodies." Viruses 13, no. 7 (July 20, 2021): 1405. http://dx.doi.org/10.3390/v13071405.

Full text
Abstract:
The entry of HIV-1 into host cells is initiated by the interaction of the viral envelope (Env) spike with the CD4 receptor. During this process, the spike undergoes a series of conformational changes that eventually lead to the exposure of the fusion peptide located at the N-terminus of the transmembrane glycoprotein, gp41. Recent structural and functional studies have provided important insights into the interaction of Env with CD4 at various stages. However, a fine elucidation of the earliest events of CD4 contact and its immediate effect on the Env conformation remains a challenge for investigation. Here, we summarize the discovery of the quaternary nature of the CD4-binding site in the HIV-1 Env and the role of quaternary contact in the functional interaction with the CD4 receptor. We propose two models for this initial contact based on the current knowledge and discuss how a better understanding of the quaternary interaction may lead to improved immunogens and antibodies targeting the CD4-binding site.
APA, Harvard, Vancouver, ISO, and other styles
3

Salzwedel, Karl, Erica D. Smith, Barna Dey, and Edward A. Berger. "Sequential CD4-Coreceptor Interactions in Human Immunodeficiency Virus Type 1 Env Function: Soluble CD4 Activates Env for Coreceptor-Dependent Fusion and Reveals Blocking Activities of Antibodies against Cryptic Conserved Epitopes on gp120." Journal of Virology 74, no. 1 (January 1, 2000): 326–33. http://dx.doi.org/10.1128/jvi.74.1.326-333.2000.

Full text
Abstract:
ABSTRACT We devised an experimental system to examine sequential events by which the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) interacts with CD4 and coreceptor to induce membrane fusion. Recombinant soluble CD4 (sCD4) activated fusion between effector cells expressing Env and target cells expressing coreceptor (CCR5 or CXCR4) but lacking CD4. sCD4-activated fusion was dose dependent, occurred comparably with two- and four-domain proteins, and demonstrated Env-coreceptor specificities parallel to those reported in conventional fusion and infectivity systems. Fusion activation occurred upon sCD4 preincubation and washing of the Env-expressing effector cells but not the coreceptor-bearing target cells, thereby demonstrating that sCD4 exerts its effects by acting on Env. These findings provide direct functional evidence for a sequential two-step model of Env-receptor interactions, whereby gp120 binds first to CD4 and becomes activated for subsequent functional interaction with coreceptor, leading to membrane fusion. We used the sCD4-activated system to explore neutralization by the anti-gp120 human monoclonal antibodies 17b and 48d. These antibodies reportedly bind conserved CD4-induced epitopes involved in coreceptor interactions but neutralize HIV-1 infection only weakly. We found that 17b and 48d had minimal effects in the standard cell fusion system using target cells expressing both CD4 and coreceptor but potently blocked sCD4-activated fusion with target cells expressing coreceptor alone. Both antibodies strongly inhibited sCD4-activated fusion by Envs from genetically diverse HIV-1 isolates. Thus, the sCD4-activated system reveals conserved Env-blocking epitopes that are masked in native Env and hence not readily detected by conventional systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Sundling, Christopher, Sijy O'Dell, Iyadh Douagi, Mattias N. Forsell, Andreas Mörner, Karin Loré, John R. Mascola, Richard T. Wyatt, and Gunilla B. Karlsson Hedestam. "Immunization with Wild-Type or CD4-Binding-Defective HIV-1 Env Trimers Reduces Viremia Equivalently following Heterologous Challenge with Simian-Human Immunodeficiency Virus." Journal of Virology 84, no. 18 (July 7, 2010): 9086–95. http://dx.doi.org/10.1128/jvi.01015-10.

Full text
Abstract:
ABSTRACT We recently reported that rhesus macaques inoculated with CD4-binding-competent and CD4-binding-defective soluble YU2-derived HIV-1 envelope glycoprotein (Env) trimers in adjuvant generate comparable levels of Env-specific binding antibodies (Abs) and T cell responses. We also showed that Abs directed against the Env coreceptor binding site (CoRbs) were elicited only in animals immunized with CD4-binding-competent trimers and not in animals immunized with CD4-binding-defective trimers, indicating that a direct interaction between Env and CD4 occurs in vivo. To investigate both the overall consequences of in vivo Env-CD4 interactions and the elicitation of CoRbs-directed Abs for protection against heterologous simian-human immunodeficiency virus (SHIV) challenge, we exposed rhesus macaques immunized with CD4-binding-competent and CD4-binding-defective trimers to the CCR5-tropic SHIV-SF162P4 challenge virus. Compared to unvaccinated controls, all vaccinated animals displayed improved control of plasma viremia, independent of the presence or absence of CoRbs-directed Abs prior to challenge. Immunization resulted in plasma responses that neutralized the heterologous SHIV challenge stock in vitro, with similar neutralizing Ab titers elicited by the CD4-binding-competent and CD4-binding-defective trimers. The neutralizing responses against both the SHIV-SF162P4 stock and a recombinant virus pseudotyped with a cloned SHIV-SF162P4-derived Env were significantly boosted by the SHIV challenge. Collectively, these results suggest that the capacity of soluble Env trimers to interact with primate CD4 in vivo and to stimulate the production of moderate titers of CoRbs-directed Abs did not influence the magnitude of the neutralizing Ab recall response after viral challenge or the subsequent control of viremia in this heterologous SHIV challenge model.
APA, Harvard, Vancouver, ISO, and other styles
5

CIMINALE, VINCENZO, BARBARA K. FELBER, MEL CAMPBELL, and GEORGE N. PAVLAKIS. "A Bioassay for HIV-1 Based on Env-CD4 Interaction." AIDS Research and Human Retroviruses 6, no. 11 (November 1990): 1281–87. http://dx.doi.org/10.1089/aid.1990.6.1281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LaBranche, Celia C., Trevor L. Hoffman, Josephine Romano, Beth S. Haggarty, Terri G. Edwards, Thomas J. Matthews, Robert W. Doms, and James A. Hoxie. "Determinants of CD4 Independence for a Human Immunodeficiency Virus Type 1 Variant Map outside Regions Required for Coreceptor Specificity." Journal of Virology 73, no. 12 (December 1, 1999): 10310–19. http://dx.doi.org/10.1128/jvi.73.12.10310-10319.1999.

Full text
Abstract:
ABSTRACT Although infection by human immunodeficiency virus (HIV) typically requires an interaction between the viral envelope glycoprotein (Env), CD4, and a chemokine receptor, CD4-independent isolates of HIV and simian immunodeficiency virus have been described. The structural basis and underlying mechanisms for this phenotype are unknown. We have derived a variant of HIV-1/IIIB, termed IIIBx, that acquired the ability to utilize CXCR4 without CD4. This virus infected CD4-negative T and B cells and fused with murine 3T3 cells that expressed human CXCR4 alone. A functional IIIBx env clone exhibited several mutations compared to the CD4-dependent HXBc2 env, including the striking loss of five glycosylation sites. By constructing env chimeras with HXBc2, the determinants for CD4 independence were shown to map outside the V1/V2 and V3 hypervariable loops, which determine chemokine receptor specificity, and at least partly within an area on the gp120 core that has been implicated in forming a conserved chemokine receptor binding site. We also identified a point mutation in the C4 domain that could render the IIIBx env clone completely CD4 dependent. Mutations in the transmembrane protein (TM) were also required for CD4 independence. Remarkably, when the V3 loop of a CCR5-tropic Env was substituted for the IIIBx Env, the resulting chimera was found to utilize CCR5 but remained CD4 independent. These findings show that Env determinants for chemokine receptor specificity are distinct from those that mediate CD4-independent use of that receptor for cell fusion and provide functional evidence for multiple steps in the interaction of Env with chemokine receptors. Combined with our observation that the conserved chemokine receptor binding site on gp120 is more exposed on the IIIBx gp120 (T. L. Hoffman, C. C. LaBranche, W. Zhang, G. Canziani, J. Robinson, I. Chaiken, J. A. Hoxie, and R. W. Doms, Proc. Natl. Acad. Sci. USA 96:6359–6364, 1999), the findings from this study suggest novel approaches to derive and design Envs with exposed chemokine receptor binding sites for vaccine purposes.
APA, Harvard, Vancouver, ISO, and other styles
7

Fernando, Kathy, Haitao Hu, Houping Ni, James A. Hoxie, and Drew Weissman. "Vaccine-delivered HIV envelope inhibits CD4+ T-cell activation, a mechanism for poor HIV vaccine responses." Blood 109, no. 6 (December 7, 2006): 2538–44. http://dx.doi.org/10.1182/blood-2006-08-038661.

Full text
Abstract:
AbstractThe human immunodeficiency virus (HIV) causes impairment of the immune system in part by targeting CD4+ T cells for infection and dysfunction. HIV envelope (Env) present on free virions and infected cells causes dysfunction of uninfected bystander CD4+ T cells via interaction with both CD4 and coreceptors. Env is commonly used as part of a cocktail of HIV antigens in current vaccines. In DNA and viral vector vaccine approaches, antigen-presenting cells (APCs) and non-APCs in the vicinity of the vaccine delivery site and draining lymph node express vaccine-derived antigens. The studies here demonstrate that cell-surface expression of Env on APCs and non-APCs as part of the vaccine action causes an inhibition of antigen-induced CD4+ T-cell activation and proliferation mediated by CD4 binding and suggests a potential mechanism for reduced activity of Env-containing HIV vaccines. Similar studies using a functional Env lacking CD4 binding circumvented suppression, suggesting an alternative and potentially superior approach to HIV vaccine design.
APA, Harvard, Vancouver, ISO, and other styles
8

Prévost, Jérémie, Jonathan Richard, Halima Medjahed, Audrey Alexander, Jennifer Jones, John C. Kappes, Christina Ochsenbauer, and Andrés Finzi. "Incomplete Downregulation of CD4 Expression Affects HIV-1 Env Conformation and Antibody-Dependent Cellular Cytotoxicity Responses." Journal of Virology 92, no. 13 (April 18, 2018): e00484-18. http://dx.doi.org/10.1128/jvi.00484-18.

Full text
Abstract:
ABSTRACTHIV-1-infected cells expressing envelope glycoproteins (Env) in the CD4-bound conformation on their surfaces are targeted by antibody-dependent cellular cytotoxicity (ADCC) mediated by CD4-induced (CD4i) antibodies and sera from HIV-1-infected individuals (HIV+sera). By downregulating the surface expression of CD4, Nef prevents Env-CD4 interaction, thus protecting HIV-1-infected cells from ADCC. HIV-1 infectious molecular clones (IMCs) are widely used to measure ADCC. In order to facilitate the identification of infected cells and high-throughput ADCC analysis, reporter genes (e.g., theRenillaluciferase [LucR] gene) are often introduced into IMC constructs. We evaluated the susceptibility of HIV-1-infected CD4+T lymphocytes to ADCC using a panel of parental IMCs and derivatives that expressed the LucR reporter gene, utilizing different molecular strategies, including one specifically designed to retain Nef expression. We found that in some of these constructs, Nef expression in CD4+T cells was suboptimal, and consequently, CD4 downregulation was incomplete. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Strikingly, protection from ADCC was observed when cells were infected with the parental IMC, which exhibited strong CD4 downregulation. This discrepancy between the parental and Nef-impaired viruses was independent of the strains of Env expressed, but rather, it was correlated with the levels of CD4 surface expression. Overall, our results indicate that caution should be taken when selecting IMCs for ADCC measurements and that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.IMPORTANCEIn-depth understanding of the susceptibility of HIV-1-infected cells to ADCC might help establish correlates of vaccine protection and guide the development of HIV-1 vaccine strategies. Different ADCC assays have been developed, including those using infectious molecular clones (IMCs) carrying a LucR reporter gene that greatly facilitates large-scale quantitative analysis. We previously reported different molecular strategies for introducing LucR while maintaining Nef expression and function and, consequently, CD4 surface downregulation. Here, we demonstrate that utilizing IMCs that exhibit impaired Nef expression can have undesirable consequences due to incomplete CD4 downregulation. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Overall, our results indicate that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.
APA, Harvard, Vancouver, ISO, and other styles
9

Finnegan, Catherine M., Werner Berg, George K. Lewis, and Anthony L. DeVico. "Antigenic Properties of the Human Immunodeficiency Virus Envelope during Cell-Cell Fusion." Journal of Virology 75, no. 22 (November 15, 2001): 11096–105. http://dx.doi.org/10.1128/jvi.75.22.11096-11105.2001.

Full text
Abstract:
ABSTRACT Human immunodeficiency virus (HIV) fusion and entry involves sequential interactions between the viral envelope protein, gp120, cell surface CD4, and a G-protein-coupled coreceptor. Each interaction creates an intermediate gp120 structure predicted to display distinct antigenic features, including key functional domains for viral entry. In this study, we examined the disposition of these features during the fusion of HeLa cells expressing either HIVHXB2 envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various times and then arrested. The cells were then examined for reactivity with antibodies directed against receptor-induced epitopes on gp120. Analyses of cells arrested by cooling to 4°C revealed that antibodies against the CD4-induced coreceptor-binding domain, i.e., 17b, 48d, and CG10, faintly react with Env cells even in the absence of target cell or soluble CD4 (sCD4) interactions. Such reactivity increased after exposure to sCD4 but remained unchanged during fusion with target cells and was not intensified at the Env-target cell interface. Notably, the antibodies did not react with Env cells when treated with a covalent cross-linker either alone or during fusion with target cells. Immunoreactivity could not be promoted or otherwise altered on either temperature arrested or cross-linked cells by preventing coreceptor interactions or by using a 17b Fab. In comparison, two other gp120-CD4 complex-dependent antibodies against epitopes outside the coreceptor domain, 8F101 and A32, exhibited a different pattern of reactivity. These antibodies reacted with the Env-target cell interface only after 30 min of cocultivation, concurrent with the first visible transfer of cytoplasmic dye from Env to target cells. At later times, the staining surrounded entire syncytia. Such binding was entirely dependent on the formation of gp120-CD4-CXCR4 tricomplexes since staining was absent with SDF-treated or coreceptor-negative target cells. Overall, these studies show that access to the CD4-induced coreceptor-binding domain on gp120 is largely blocked at the fusing cell interface and is unlikely to represent a target for neutralizing antibodies. However, new epitopes are presented on intermediate gp120 structures formed as a result of coreceptor interactions. Such findings have important implications for HIV vaccine approaches based on conformational alterations in envelope structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Swanstrom, Adrienne E., Gregory Q. Del Prete, Claire Deleage, Samra E. Elser, Andrew A. Lackner, and James A. Hoxie. "The SIV Envelope Glycoprotein, Viral Tropism, and Pathogenesis: Novel Insights from Nonhuman Primate Models of AIDS." Current HIV Research 16, no. 1 (April 19, 2018): 29–40. http://dx.doi.org/10.2174/1570162x15666171124123116.

Full text
Abstract:
Background: Cellular tropism of human immunodeficiency virus (HIV-1) is closely linked to interactions between the viral envelope glycoprotein (Env) with CD4 and chemokine receptor family members, CCR5 and CXCR4. This interaction plays a key role in determining anatomic sites that are infected in vivo and the cascade of early and late events that result in chronic immune activation, immunosuppression and ultimately, AIDS. CD4+ T cells are critical to adaptive immune responses, and their early and rapid infection in gut lamina propria and secondary lymphoid tissues in susceptible hosts likely contributes to viral persistence and progression to disease. CD4+ macrophages are also infected, although their role in HIV-1 pathogenesis is more controversial.Methods: Pathogenic infection by simian immunodeficiency viruses (SIV) in Asian macaques as models of HIV-1 infection has enabled the impact of cellular tropism on pathogenesis to be directly probed. This review will highlight examples in which experimental interventions during SIV infection or the introduction of viral mutations have altered cellular tropism and, subsequently, pathogenesis.Results: Alterations to the interaction of Env and its cellular receptors has been shown to result in changes to CD4 dependence, coreceptor specificity, and viral tropism for gut CD4+ T cells and macrophages.Conclusion: Collectively, these findings have yielded novel insights into the critical role of the viral Env and tropism as a driver of pathogenesis and host control and have helped to identify new areas for targeted interventions in therapy and prevention of HIV-1 infection.
APA, Harvard, Vancouver, ISO, and other styles
11

Murakami, Tsutomu, Sherimay Ablan, Eric O. Freed, and Yuetsu Tanaka. "Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity." Journal of Virology 78, no. 2 (January 15, 2004): 1026–31. http://dx.doi.org/10.1128/jvi.78.2.1026-1031.2004.

Full text
Abstract:
ABSTRACT We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR+) or inactive (PR−) viral PR. We observed that PR− virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.
APA, Harvard, Vancouver, ISO, and other styles
12

Kubo, Yoshinao, Masaru Yokoyama, Hiroaki Yoshii, Chiho Mitani, Chika Tominaga, Yuetsu Tanaka, Hironori Sato, and Naoki Yamamoto. "Inhibitory role of CXCR4 glycan in CD4-independent X4-tropic human immunodeficiency virus type 1 infection and its abrogation in CD4-dependent infection." Journal of General Virology 88, no. 11 (November 1, 2007): 3139–44. http://dx.doi.org/10.1099/vir.0.83202-0.

Full text
Abstract:
CXCR4 functions as an infection receptor of X4 human immunodeficiency virus type 1 (HIV-1) . CXCR4 is glycosylated at the N-terminal extracellular region, which is important for viral envelope (Env) protein binding. We compared the effects of CXCR4 glycan on the CD4-dependent and –independent infections in human cells by X4 viruses. We found that transduction mediated by Env proteins of CD4-independent HIV-1 strains increased up to 5.5-fold in cells expressing unglycosylated CXCR4, suggesting that the CXCR4 glycan inhibits CD4-independent X4 virus infection. Co-expression of CD4 on the target cell surface or pre-incubation of virus particles with soluble CD4 abrogates the glycan-mediated inhibition of X4 virus infection, suggesting that interaction of Env protein with CD4 counteracts the inhibition. These findings indicate that it will be advantageous for X4 HIV-1 to remain CD4-dependent. A structural model that explains the glycan-mediated inhibition is discussed.
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Xiao Mei, Peter E. Nadeau, Yung-Tsun Lo, and Ayalew Mergia. "Caveolin-1 Modulates HIV-1 Envelope-Induced Bystander Apoptosis through gp41." Journal of Virology 84, no. 13 (April 14, 2010): 6515–26. http://dx.doi.org/10.1128/jvi.02722-09.

Full text
Abstract:
ABSTRACT Human immunodeficiency virus (HIV) envelope (Env)-mediated bystander apoptosis is known to cause the progressive, severe, and irreversible loss of CD4+ T cells in HIV-1-infected patients. Env-induced bystander apoptosis has been shown to be gp41 dependent and related to the membrane hemifusion between envelope-expressing cells and target cells. Caveolin-1 (Cav-1), the scaffold protein of specific membrane lipid rafts called caveolae, has been reported to interact with gp41. However, the underlying pathological or physiological meaning of this robust interaction remains unclear. In this report, we examine the interaction of cellular Cav-1 and HIV gp41 within the lipid rafts and show that Cav-1 modulates Env-induced bystander apoptosis through interactions with gp41 in SupT1 cells and CD4+ T lymphocytes isolated from human peripheral blood. Cav-1 significantly suppressed Env-induced membrane hemifusion and caspase-3 activation and augmented Hsp70 upregulation. Moreover, a peptide containing the Cav-1 scaffold domain sequence markedly inhibited bystander apoptosis and apoptotic signal pathways. Our studies shed new light on the potential role of Cav-1 in limiting HIV pathogenesis and the development of a novel therapeutic strategy in treating HIV-1-infected patients.
APA, Harvard, Vancouver, ISO, and other styles
14

Song, Yul, Daniel Cyburt, Tiffany Lucas, Devon Gregory, Terri Lyddon, and Marc Johnson. "βTrCP is Required for HIV-1 Vpu Modulation of CD4, GaLV Env, and BST-2/Tetherin." Viruses 10, no. 10 (October 19, 2018): 573. http://dx.doi.org/10.3390/v10100573.

Full text
Abstract:
The Human immunodeficiency virus-1 (HIV-1) accessory protein Vpu modulates numerous proteins, including the host proteins CD4 and BST-2/tetherin. Vpu interacts with the Skp, Cullin, F-Box (SCF) ubiquitin ligase through interactions with the F-Box protein βTrCP (1 and/or 2). This interaction is dependent on phosphorylation of S52,56 in Vpu. Mutation of S52,56, or inhibition of the SCF, abolishes most Vpu activity against CD4 and partly reduces activity against BST-2/tetherin. Recently, Vpu has also been reported to interact with the clathrin adapter proteins AP-1 and AP-2, and these interactions were also found to be required for BST-2/tetherin antagonism in an S52,56 -dependent manner. In assays where HIV-1 is pseudotyped with gibbon ape leukemia virus (GaLV Env), Vpu has also been found to prevent GaLV Env from being incorporated into viral particles, but the mechanism for this antagonism is not fully understood. To clarify the role of the βTrCPs in Vpu function we used CRISPR/Cas9 to generate a clonal cell line lacking both βTrCP-1 and -2. Vpu activity against CD4 and GaLV Env was abolished in this cell line, and activity against BST-2/tetherin reduced significantly. Mutation of the S52,56 residues no longer affected Vpu activity against BST-2/tetherin in this cell line. These data suggest that the primary role of the S52,56 residues in antagonism of CD4, GaLV Env, and BST-2/tetherin is to recruit the SCF/βTrCP ubiquitin ligase.
APA, Harvard, Vancouver, ISO, and other styles
15

Dumonceaux, Julie, Sébastien Nisole, Chantal Chanel, Laurence Quivet, Ali Amara, Frano̧ise Baleux, Pascale Briand, and Uriel Hazan. "Spontaneous Mutations in the env Gene of the Human Immunodeficiency Virus Type 1 NDK Isolate Are Associated with a CD4-Independent Entry Phenotype." Journal of Virology 72, no. 1 (January 1, 1998): 512–19. http://dx.doi.org/10.1128/jvi.72.1.512-519.1998.

Full text
Abstract:
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multistep process initiated by envelope protein gp120 binding to cell surface CD4. The conformational changes induced by this interaction likely favor a second-step interaction between gp120 and a coreceptor such as CXCR4 or CCR5. Here, we report a spontaneous and stable CD4-independent entry phenotype for the HIV-1 NDK isolate. This mutant strain, which emerged from a population of chronically infected CD4-positive CEM cells, can replicate in CD4-negative human cell lines. The presence of CXCR4 alone renders cells susceptible to infection by the mutant NDK, and infection can be blocked by the CXCR4 natural ligand SDF-1. Furthermore, we have correlated the CD4-independent phenotype with seven mutations in the C2 and C3 regions and the V3 loop. We propose that the mutant gp120 spontaneously acquires a conformation allowing it to interact directly with CXCR4. This virus provides us with a powerful tool to study directly gp120-CXCR4 interactions.
APA, Harvard, Vancouver, ISO, and other styles
16

Yoshimura, Kazuhisa, Shigeyoshi Harada, Junji Shibata, Makiko Hatada, Yuko Yamada, Chihiro Ochiai, Hirokazu Tamamura, and Shuzo Matsushita. "Enhanced Exposure of Human Immunodeficiency Virus Type 1 Primary Isolate Neutralization Epitopes through Binding of CD4 Mimetic Compounds." Journal of Virology 84, no. 15 (May 26, 2010): 7558–68. http://dx.doi.org/10.1128/jvi.00227-10.

Full text
Abstract:
ABSTRACT N-(4-Chlorophenyl)-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide (NBD-556) is a low-molecular-weight compound that reportedly blocks the interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and its receptor CD4. We investigated whether the enhancement of binding of anti-gp120 monoclonal antibodies (MAbs) toward envelope (Env) protein with NBD-556 are similar to those of soluble CD4 (sCD4) by comparing the binding profiles of the individual MAbs to Env-expressing cell surfaces. In flow cytometric analyses, the binding profiles of anti-CD4-induced epitope (CD4i) MAbs toward NBD-556-pretreated Env-expressing cell surfaces were similar to the binding profiles toward sCD4-pretreated cell surfaces. To investigate the binding position of NBD-556 on gp120, we induced HIV-1 variants that were resistant to NBD-556 and sCD4 in vitro. At passage 21 in the presence of 50 μM NBD-556, two amino acid substitutions (S375N in C3 and A433T in C4) were identified. On the other hand, in the selection with sCD4, seven mutations (E211G, P212L, V255E, N280K, S375N, G380R, and G431E) appeared during the passages. The profiles of the mutations after the selections with NBD-556 and sCD4 were very similar in their three-dimensional positions. Moreover, combinations of NBD-556 with anti-gp120 MAbs showed highly synergistic interactions against HIV-1. We further found that after enhancing the neutralizing activity by adding NBD-556, the contemporaneous virus became highly sensitive to antibodies in the patient's plasma. These findings suggest that small compounds such as NBDs may enhance the neutralizing activities of CD4i and anti-V3 antibodies in vivo.
APA, Harvard, Vancouver, ISO, and other styles
17

Alsahafi, Nirmin, Shilei Ding, Jonathan Richard, Tristan Markle, Nathalie Brassard, Bruce Walker, George K. Lewis, Daniel E. Kaufmann, Mark A. Brockman, and Andrés Finzi. "Nef Proteins from HIV-1 Elite Controllers Are Inefficient at Preventing Antibody-Dependent Cellular Cytotoxicity." Journal of Virology 90, no. 6 (December 30, 2015): 2993–3002. http://dx.doi.org/10.1128/jvi.02973-15.

Full text
Abstract:
ABSTRACTImpairment of Nef function, including reduced CD4 downregulation, was described in a subset of HIV-1-infected individuals that control viral replication without antiretroviral treatment (elite controllers [EC]). Elimination of HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC) requires the presence of envelope glycoproteins (Env) in the CD4-bound conformation, raising the possibility that accumulating CD4 at the surface of virus-infected cells in EC could interact with Env and thereby sensitize these cells to ADCC. We observed a significant increase in the exposure of Env epitopes targeted by ADCC-mediating antibodies at the surface of cells expressing Nef isolates from EC; this correlated with enhanced susceptibility to ADCC. Altogether, our results suggest that enhanced susceptibility of HIV-1-infected cells to ADCC may contribute to the EC phenotype.IMPORTANCENef clones derived from elite controllers (EC) have been shown to be attenuated for CD4 downregulation; how this contributes to the nonprogressor phenotype of these infected individuals remains uncertain. Increasing evidence supports a role for HIV-specific antibody-dependent cellular cytotoxicity (ADCC) in controlling viral infection and replication. Here, we show that residual CD4 left at the surface of cells expressing Nef proteins isolated from ECs are sufficient to allow Env-CD4 interaction, leading to increased exposure of Env CD4-induced epitopes and increased susceptibility of infected cells to ADCC. Our results suggest that ADCC might be an active immune mechanism in EC that helps to maintain durable suppression of viral replication and low plasma viremia level in this rare subset of infected individuals. Therefore, targeting Nef's ability to downregulate CD4 could render HIV-1-infected cells susceptible to ADCC and thus have therapeutic utility.
APA, Harvard, Vancouver, ISO, and other styles
18

Haupt, Sabrina, Norbert Donhauser, Chawaree Chaipan, Philipp Schuster, Bridget Puffer, Rod S. Daniels, Thomas C. Greenough, Frank Kirchhoff, and Barbara Schmidt. "CD4 Binding Affinity Determines Human Immunodeficiency Virus Type 1-Induced Alpha Interferon Production in Plasmacytoid Dendritic Cells." Journal of Virology 82, no. 17 (June 25, 2008): 8900–8905. http://dx.doi.org/10.1128/jvi.00196-08.

Full text
Abstract:
ABSTRACT Plasmacytoid dendritic cells (PDC) are major producers of type I interferons (IFN) in response to human immunodeficiency virus type 1 (HIV-1) infection. To better define the underlying mechanisms, we studied the magnitude of alpha IFN (IFN-α) induction by recombinant viruses containing changes in the Env protein that impair or disrupt CD4 binding or expressing primary env alleles with differential coreceptor tropism. We found that the CD4 binding affinity but not the viral coreceptor usage is critical for the attachment of autofluorescing HIV-1 to PDC and for subsequent IFN-α induction. Our results illustrate the importance of the gp120-CD4 interaction in determining HIV-1-induced immune stimulation via IFN-α production.
APA, Harvard, Vancouver, ISO, and other styles
19

Vincent, Martin J., Lawrence R. Melsen, Annelet S. Martin, and Richard W. Compans. "Intracellular Interaction of Simian Immunodeficiency Virus Gag and Env Proteins." Journal of Virology 73, no. 10 (October 1, 1999): 8138–44. http://dx.doi.org/10.1128/jvi.73.10.8138-8144.1999.

Full text
Abstract:
ABSTRACT In polarized epithelial cells, the assembly and release of human immunodeficiency virus type 1 (HIV-1) occur at the basolateral side of the plasma membrane, and the site of assembly is determined by the site of expression of the Env protein. In order to investigate whether the expression of the Env proteins exclusively in the endoplasmic reticulum (ER) can alter the site of virus assembly, we coexpressed the simian immunodeficiency virus (SIV) Gag protein and mutant SIV Env proteins having an ER retrieval signal (KKXX motif). In cells expressing the wild-type (wt) Env protein or coexpressing Env and Gag proteins, the Env protein was processed into the surface (SU) and transmembrane (TM) proteins. In contrast, in cells expressing the mutant Env proteins alone or in combination with Gag, the Env proteins were retrieved to the ER and were not proteolytically processed. Coexpression of the Gag and ER-retained mutant Env proteins resulted in a transient decrease in the release of the Gag protein into the medium, suggesting an interaction between the Gag and ER-retrieved Env proteins. Using saponin-permeabilized cells coexpressing Gag and Env proteins, we obtained further evidence for Env-Gag interaction. A monoclonal antibody specific to the SIV Gag protein was found to coimmunoprecipitate both the Gag and Env proteins. The interaction was specific, as coexpressed SIV Env proteins without the cytoplasmic tail or a chimeric HIV-1 Env proteins with the CD4 cytoplasmic tail were not coimmunoprecipitated by the Gag-specific antibody. Electron microscopic analyses indicated that assembly of virus particles occurred only at the surfaces of cells in which the Gag protein was coexpressed with either the wt or ER-retrieved mutant Env protein. These data indicate that although the Env and Gag proteins interact intracellularly, the site of assembly of SIV is not redirected to an intracellular organelle by the retrieval of the Env protein to the ER.
APA, Harvard, Vancouver, ISO, and other styles
20

Veillette, Maxime, Mathieu Coutu, Jonathan Richard, Laurie-Anne Batraville, Olina Dagher, Nicole Bernard, Cécile Tremblay, Daniel E. Kaufmann, Michel Roger, and Andrés Finzi. "The HIV-1 gp120 CD4-Bound Conformation Is Preferentially Targeted by Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies in Sera from HIV-1-Infected Individuals." Journal of Virology 89, no. 1 (October 22, 2014): 545–51. http://dx.doi.org/10.1128/jvi.02868-14.

Full text
Abstract:
ABSTRACTRecent studies have linked antibody Fc-mediated effector functions with protection or control of human immunodeficiency type 1 (HIV-1) and simian immunodeficiency (SIV) infections. Interestingly, the presence of antibodies with potent antibody-dependent cellular cytotoxicity (ADCC) activity in the Thai RV144 vaccine trial was suggested to correlate with decreased HIV-1 acquisition risk. These antibodies recently were found to recognize HIV envelope (Env) epitopes exposed upon Env-CD4 interaction. CD4 downregulation by Nef and Vpu, as well as Vpu-mediated BST-2 antagonism, were reported to modulate exposure of those CD4-induced HIV-1 Env epitopes and were proposed to play a role in reducing the susceptibility of infected cells to ADCC mediated by this class of antibodies. Here, we report the high prevalence of antibodies recognizing CD4-induced HIV-1 Env epitopes in sera from HIV-1-infected individuals, which correlated with their ability to mediate ADCC responses against HIV-1-infected cells, exposing these Env epitopes at the cell surface. Furthermore, our results indicate that Env variable regions V1, V2, V3, and V5 do not represent a major determinant for ADCC responses mediated by sera from HIV-1-infected individuals. Altogether, these findings suggest that HIV-1 tightly controls the exposure of certain Env epitopes at the surface of infected cells in order to prevent elimination by Fc-effector functions.IMPORTANCEHere, we identified a particular conformation of HIV-1 Env that is specifically targeted by ADCC-mediating antibodies present in sera from HIV-1-infected individuals. This observation suggests that HIV-1 developed sophisticated mechanisms to minimize the exposure of these epitopes at the surface of infected cells.
APA, Harvard, Vancouver, ISO, and other styles
21

Bandres, Juan C., Qing F. Wang, Jeanne O’Leary, Françoise Baleaux, Ali Amara, James A. Hoxie, Susan Zolla-Pazner, and Miroslaw K. Gorny. "Human Immunodeficiency Virus (HIV) Envelope Binds to CXCR4 Independently of CD4, and Binding Can Be Enhanced by Interaction with Soluble CD4 or by HIV Envelope Deglycosylation." Journal of Virology 72, no. 3 (March 1, 1998): 2500–2504. http://dx.doi.org/10.1128/jvi.72.3.2500-2504.1998.

Full text
Abstract:
ABSTRACT Chemokine receptor CXCR4 (also known as LESTR and fusin) has been shown to function as a coreceptor for T-cell-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have developed a binding assay to show that HIV envelope (Env) can interact with CXCR4 independently of CD4 but that this binding is markedly enhanced by the previous interaction of Env with soluble CD4. We also show that nonglycosylated HIV-1SF-2 gp120 or sodium metaperiodate-treated oligomeric gp160 from HIV-1451 bound much more readily to CXCR4 than their counterparts with intact carbohydrate residues did.
APA, Harvard, Vancouver, ISO, and other styles
22

Doranz, Benjamin J., Sarah S. W. Baik, and Robert W. Doms. "Use of a gp120 Binding Assay To Dissect the Requirements and Kinetics of Human Immunodeficiency Virus Fusion Events." Journal of Virology 73, no. 12 (December 1, 1999): 10346–58. http://dx.doi.org/10.1128/jvi.73.12.10346-10358.1999.

Full text
Abstract:
ABSTRACT Binding of the extracellular subunit of human immunodeficiency type 1 (HIV-1) envelope (Env) glycoprotein (gp120) to CD4 triggers the induction or exposure of a highly conserved coreceptor binding site in gp120 that helps mediate membrane fusion. Characterizing the structural features involved in gp120-coreceptor binding and the conditions under which binding occurs is important for understanding the fusion process, the evolution of pathogenic strains in vivo, the identification of novel anti-HIV compounds, and the development of HIV vaccines that utilize triggered structures of Env. Here we use the kinetics of interaction between CCR5 and gp120 to understand temporal and structural changes that occur during viral fusion. Using saturation binding and homologous competition analysis, we estimated theKd of interaction between CCR5 and gp120 from the macrophage tropic HIV-1 strain JRFL to be 4 nM. Unlike Env-mediated fusion, gp120 binding to CCR5 did not require divalent cations or elevated temperatures. Binding was not significantly affected by the pH of binding, G-protein coupling of CCR5, or partial gp120 deglycosylation. Oligomeric, uncleaved JRFL gp140 failed to bind CCR5 despite its ability to bind CD4 and monoclonal antibody 17b, suggesting that the uncleaved ectodomain of gp41 interferes with full exposure of the chemokine receptor binding site. Exposure of the chemokine receptor binding site on gp120 could be induced rapidly by CD4, but exposure of this site was lost upon CD4 dissociation from gp120, indicating that the conformational changes in gp120 induced by CD4 binding are fully reversible. The functional gp120-soluble CD4 complex was remarkably stable over time and temperature ranges, offering the possibility that complexes in which the highly conserved coreceptor binding site in gp120 is exposed can be used for vaccine development.
APA, Harvard, Vancouver, ISO, and other styles
23

Lin, George, Benhur Lee, Beth S. Haggarty, Robert W. Doms, and James A. Hoxie. "CD4-Independent Use of Rhesus CCR5 by Human Immunodeficiency Virus Type 2 Implicates an Electrostatic Interaction between the CCR5 N Terminus and the gp120 C4 Domain." Journal of Virology 75, no. 22 (November 15, 2001): 10766–78. http://dx.doi.org/10.1128/jvi.75.22.10766-10778.2001.

Full text
Abstract:
ABSTRACT Envelope glycoproteins (Envs) of human immunodeficiency virus type 2 (HIV-2) are frequently able to use chemokine receptors, CXCR4 or CCR5, in the absence of CD4. However, while these Envs are commonly dual-tropic, no isolate has been described to date that is CD4 independent on both CXCR4 and CCR5. In this report we show that a variant of HIV-2/NIHz, termed HIV-2/vcp, previously shown to utilize CXCR4 without CD4, is also CD4 independent on rhesus (rh) CCR5, but requires CD4 to fuse with human (hu) CCR5. The critical determinant for this effect was an acidic amino acid at position 13 in the CCR5 N terminus, which is an asparagine in huCCR5 and an aspartic acid in rhCCR5. Transferring the huCCR5 N terminus with an N13D substitution to CCR2b or CXCR2 was sufficient to render these heterologous chemokine receptors permissive for CD4-independent fusion. Chimeric Envs between HIV-2/vcp and a CD4-dependent clone of HIV-2/NIHz as well as site-directed Env mutations implicated a positively charged amino acid (lysine or arginine) at position 427 in the C4 region of the HIV-2/vcpenv gene product (VCP) gp120 as a key determinant for this phenotype. Because CD4-independent use of CCR5 mapped to a negatively charged amino acid in the CCR5 N terminus and a positively charged amino acid in the gp120 C4 domain, an electrostatic interaction between these residues or domains is likely. Although not required for CD4-dependent fusion, this interaction may serve to increase the binding affinity of Env and CCR5 and/or to facilitate subsequent conformational changes that are required for fusion. Because the structural requirements for chemokine receptor use by HIV are likely to be more stringent in the absence of CD4, CD4-independent viruses should be particularly useful in dissecting molecular events that are critical for viral entry.
APA, Harvard, Vancouver, ISO, and other styles
24

Lai, Yen-Ting. "Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition." Viruses 13, no. 5 (May 6, 2021): 843. http://dx.doi.org/10.3390/v13050843.

Full text
Abstract:
Viral entry into host cells is a critical step in the viral life cycle. HIV-1 entry is mediated by the sole surface envelope glycoprotein Env and is initiated by the interaction between Env and the host receptor CD4. This interaction, referred to as the attachment step, has long been considered an attractive target for inhibitor discovery and development. Fostemsavir, recently approved by the FDA, represents the first-in-class drug in the attachment inhibitor class. This review focuses on the discovery of temsavir (the active compound of fostemsavir) and analogs, mechanistic studies that elucidated the mode of action, and structural studies that revealed atomic details of the interaction between HIV-1 Env and attachment inhibitors. Challenges associated with emerging resistance mutations to the attachment inhibitors and the development of next-generation attachment inhibitors are also highlighted.
APA, Harvard, Vancouver, ISO, and other styles
25

Lin, George, Frédéric Baribaud, Josephine Romano, Robert W. Doms, and James A. Hoxie. "Identification of gp120 Binding Sites on CXCR4 by Using CD4-Independent Human Immunodeficiency Virus Type 2 Env Proteins." Journal of Virology 77, no. 2 (January 15, 2003): 931–42. http://dx.doi.org/10.1128/jvi.77.2.931-942.2003.

Full text
Abstract:
ABSTRACT Human immunodeficiency virus (HIV) and simian (SIV) immunodeficiency virus entry is mediated by binding of the viral envelope glycoprotein (Env) to CD4 and chemokine receptors, CCR5 and/or CXCR4. CD4 induces extensive conformational changes that expose and/or induce formation of a chemokine receptor binding site on gp120. CD4-independent Env's of HIV type 1 (HIV-1), HIV-2, and SIV have been identified that exhibit exposed chemokine receptor binding sites and can bind directly to CCR5 or CXCR4 in the absence of CD4. While many studies have examined determinants for gp120-CCR5 binding, analysis of gp120-CXCR4 binding has been hindered by the apparently lower affinity of this interaction for X4-tropic HIV-1 isolates. We show here that gp120 proteins from two CD4-independent HIV-2 Env's, VCP and ROD/B, bind directly to CXCR4 with an apparently high affinity. By use of CXCR4 N-terminal deletion constructs, CXCR4-CXCR2 chimeras, and human-rat CXCR4 chimeras, binding determinants were shown to reside in the amino (N) terminus, extracellular loop 2 (ECL2), and ECL3. Alanine-scanning mutagenesis of charged residues, tyrosines, and phenylalanines in extracellular CXCR4 domains implicated multiple amino acids in the N terminus (E14/E15, D20, Y21, and D22), ECL2 (D187, R188, F189, Y190, and D193), and ECL3 (D262, E268, E277, and E282) in binding, although minor differences were noted between VCP and ROD/B. However, mutations in CXCR4 that markedly reduced binding did not necessarily hinder cell-cell fusion by VCP or ROD/B, especially in the presence of CD4. These gp120 proteins will be useful in dissecting determinants for CXCR4 binding and Env triggering and in evaluating pharmacologic inhibitors of the gp120-CXCR4 interaction.
APA, Harvard, Vancouver, ISO, and other styles
26

Shieh, Joseph T. C., Julio Martín, Gordon Baltuch, Michael H. Malim, and Francisco González-Scarano. "Determinants of Syncytium Formation in Microglia by Human Immunodeficiency Virus Type 1: Role of the V1/V2 Domains." Journal of Virology 74, no. 2 (January 15, 2000): 693–701. http://dx.doi.org/10.1128/jvi.74.2.693-701.2000.

Full text
Abstract:
ABSTRACT Microglia are the main reservoir for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS), and multinucleated giant cells, the result of fusion of HIV-1-infected microglia and brain macrophages, are the neuropathologic hallmark of HIV dementia. One potential explanation for the formation of syncytia is viral adaptation for these CD4+ CNS cells. HIV-1BORI-15, a virus adapted to growth in microglia by sequential passage in vitro, mediates high levels of fusion and replicates more efficiently in microglia and monocyte-derived-macrophages than its unpassaged parent (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. Gonzalez-Scarano, J. Virol. 70:7654–7662, 1996). Since the interaction between the viral envelope glycoprotein and CD4 and the chemokine receptor mediates fusion and plays a key role in tropism, we have analyzed the HIV-1BORI-15 env as a fusogen and in recombinant and pseudotyped viruses. Its syncytium-forming phenotype is not the result of a switch in coreceptor use but rather of the HIV-1BORI-15envelope-mediated fusion of CD4+CCR5+ cells with greater efficiency than that of its parental strain, either by itself or in the context of a recombinant virus. Genetic analysis indicated that the syncytium-forming phenotype was due to four discrete amino acid differences in V1/V2, with a single-amino-acid change between the parent and the adapted virus (E153G) responsible for the majority of the effect. Additionally, HIV-1BORI-15 env-pseudotyped viruses were less sensitive to decreases in the levels of CD4 on transfected 293T cells, leading to the hypothesis that the differences in V1/V2 alter the interaction between this envelope and CD4 or CCR5, or both. In sum, the characterization of the envelope of HIV-1BORI-15, a highly fusogenic glycoprotein with genetic determinants in V1/V2, may lead to a better understanding of the relationship between HIV replication and syncytium formation in the CNS and of the importance of this region of gp120 in the interaction with CD4 and CCR5.
APA, Harvard, Vancouver, ISO, and other styles
27

Pöhlmann, Stefan, Carl Davis, Silke Meister, George J. Leslie, Claas Otto, Jacqueline D. Reeves, Bridget A. Puffer, et al. "Amino Acid 324 in the Simian Immunodeficiency Virus SIVmac V3 Loop Can Confer CD4 Independence and Modulate the Interaction with CCR5 and Alternative Coreceptors." Journal of Virology 78, no. 7 (April 1, 2004): 3223–32. http://dx.doi.org/10.1128/jvi.78.7.3223-3232.2004.

Full text
Abstract:
ABSTRACT The V3 loop of the simian immunodeficiency virus (SIV) envelope protein (Env) largely determines interactions with viral coreceptors. To define amino acids in V3 that are critical for coreceptor engagement, we functionally characterized Env variants with amino acid substitutions at position 324 in V3, which has previously been shown to impact SIV cell tropism. These changes modulated CCR5 engagement and, in some cases, allowed the efficient usage of CCR5 in the absence of CD4. The tested amino acid substitutions had highly differential effects on viral infectivity. Eleven of sixteen substitutions disrupted entry via CCR5 or the alternative coreceptor GPR15. Nevertheless, most of these variants replicated in the macaque T-cell line 221-89 and some also replicated in rhesus macaque peripheral blood monocytes, suggesting that efficient usage of CCR5 and GPR15 on cell lines is not a prerequisite for SIV replication in primary cells. Four variants showed enhanced entry into the macaque sMagi reporter cell line. However, sMagi cells did not express appreciable amounts of CCR5 and GPR15 mRNA, and entry into these cells was not efficiently blocked by a small-molecule CCR5 antagonist, suggesting that sMagi cells express as-yet-unidentified entry cofactors. In summary, we found that a single amino acid at position 324 in the SIV Env V3 loop can modulate both the efficiency and the types of coreceptors engaged by Env and allow for CD4-independent fusion in some cases.
APA, Harvard, Vancouver, ISO, and other styles
28

Salmon, P., R. Olivier, Y. Riviere, E. Brisson, J. C. Gluckman, M. P. Kieny, L. Montagnier, and D. Klatzmann. "Loss of CD4 membrane expression and CD4 mRNA during acute human immunodeficiency virus replication." Journal of Experimental Medicine 168, no. 6 (December 1, 1988): 1953–69. http://dx.doi.org/10.1084/jem.168.6.1953.

Full text
Abstract:
Using mAbs and genomic probe to the CD4 molecule, the HIV receptor, we demonstrated that HIV replication induces the disappearance of its functional receptor from the cell surface by two distinct mechanisms. First, after being expressed onto the cell surface, HIV envelope gp110 will complex CD4, efficiently masking the CD4 epitope used by the virus to bind its receptor. This phenomenon occurs on the surface of each infected cell and is not due to the release of soluble gp110; infection with recombinant HIV/vaccinia viruses expressing a mutated HIV env gene designed to prevent gp110 release from the cell surface induces a similar gp/CD4 complexes formation. Second, virus replication induces a dramatic and rapid loss of CD4 mRNA transcripts, preventing new CD4 molecules from being synthesized. These two mechanisms of receptor modulation could have been developed to avoid reinfection of cells replicating the virus as well as to produce more infectious particles. These results suggest that the classical virus interference documented for other retroviruses might not only be due to receptor/envelope interaction, but might also depend on receptor gene expression.
APA, Harvard, Vancouver, ISO, and other styles
29

Pleskoff, Olivier, Carole Tréboute, and Marc Alizon. "The Cytomegalovirus-Encoded Chemokine Receptor US28 Can Enhance Cell-Cell Fusion Mediated by Different Viral Proteins." Journal of Virology 72, no. 8 (August 1, 1998): 6389–97. http://dx.doi.org/10.1128/jvi.72.8.6389-6397.1998.

Full text
Abstract:
ABSTRACT The human cytomegalovirus (CMV) US28 gene encodes a functional CC chemokine receptor. However, this activity was observed in cells transfected to express US28 and might not correspond to the actual role of the protein in the CMV life cycle. Expression of US28 allows human immunodeficiency virus type 1 (HIV-1) entry into certain CD4+ cells and their fusion with cells expressing HIV-1 envelope (Env) proteins. Such properties were initially reported for the cellular chemokine receptors CCR5 and CXCR4, which behave as CD4-associated HIV-1 coreceptors. We found that coexpression of US28 and either CXCR4 or CCR5 in CD4+ cells resulted in enhanced synctium formation with HIV-1 Env+ cells. This positive effect of US28 on cell fusion seems to be distinct from its HIV-1 coreceptor activity. Indeed, enhancement of cell fusion was also observed when US28 was expressed on the HIV-1 Env+ cells instead of an CD4+ target cells. Furthermore, US28 could enhance cell fusion mediated by other viral proteins, in particular, the G protein of vesicular stomatitis virus (VSV-G). The HIV-1 coreceptor and fusion-enhancing activities could be affected by mutations in different domains of US28. The fusion-enhancing activity of US28 seems to be cell type dependent. Indeed, cells coexpressing VSV-G and US28 fused more efficiently with human, simian, or feline target cells, while US28 had no apparent effect on fusion with the three mouse or rat cell lines tested. The positive effect of US28 on cell fusion might therefore require its interaction with a cell-specific factor. We discuss a possible role for US28 in the fusion of the CMV envelope with target cells and CMV entry.
APA, Harvard, Vancouver, ISO, and other styles
30

Gardiner, Jaye C., Eric J. Mauer, and Nathan M. Sherer. "HIV-1 Gag, Envelope, and Extracellular Determinants Cooperate To Regulate the Stability and Turnover of Virological Synapses." Journal of Virology 90, no. 14 (May 11, 2016): 6583–97. http://dx.doi.org/10.1128/jvi.00600-16.

Full text
Abstract:
ABSTRACTRetroviruses spread more efficiently when infected and uninfected cells form tight, physical interfaces known as virological synapses (VSs). VS formation is initiated by adhesive interactions between viral Envelope (Env) glycoproteins on the infected cell and CD4 receptor molecules on the uninfected cell. How high-avidity Env-CD4 linkages are resolved over time is unknown. We describe here a tractable two-color, long-term (>24 h) live cell imaging strategy to study VS turnover in the context of a large cell population, quantitatively. We show that Env's conserved cytoplasmic tail (CT) can potently signal the recruitment of Gag capsid proteins to the VS, a process also dependent on residues within Gag's N-terminal matrix (MA) domain. Additionally, we demonstrate that Env's CT and Gag's MA domain both regulate the duration of interactions between viral donor and target cells, as well as the stability of this interaction over time (i.e., its capacity to resolve or form a syncytium). Finally, we report the unexpected finding that modulating extracellular fluid viscosity markedly impacts target T cell trafficking and thus affects the duration, stability, and turnover of virus-induced cell-cell contacts. Combined, these results suggest a stepwise model for viral cell-to-cell transmission wherein (i) Env-receptor interactions anchor target cells to infected cells, (ii) Env signals Gag's recruitment to the cell-cell contact dependent on an intact Env CT and Gag MA, and (iii) Env CT and Gag MA, in conjunction with extracellular forces, combine to regulate VS stability and infectious outcomes.IMPORTANCEHIV-1 spreads efficiently at physical, cell-cell interfaces known as virological synapses (VSs). The VS provides for spatiotemporal coupling of virus assembly and entry into new host cells and may transmit signals relevant to pathogenesis. Disrupting this mode of transmission may be critical to the goal of abolishing viral persistence in infected individuals. We describe here a long-term live cell imaging strategy for studying virus-induced effects on cell behavior in the context of a large cell population. We demonstrate cooperative roles for viral Gag capsid proteins and Envelope glycoproteins in regulating VS formation and turnover. We also show that modulating fluid viscosity markedly affects T cell trafficking and VS stability. Thus, extracellular factors also play an important role in modulating the nature of infectious cell-cell interactions. In sum, our study provides new tools and insights relevant to exposing vulnerabilities in how HIV-1 and other viruses spread infection among cells, tissues, and people.
APA, Harvard, Vancouver, ISO, and other styles
31

Reszka-Blanco, Natalia J., Vijay Sivaraman, Liguo Zhang, and Lishan Su. "HIV-1 Env and Nef Cooperatively Contribute to Plasmacytoid Dendritic Cell Activation via CD4-Dependent Mechanisms." Journal of Virology 89, no. 15 (May 13, 2015): 7604–11. http://dx.doi.org/10.1128/jvi.00695-15.

Full text
Abstract:
ABSTRACTPlasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1 (HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as contributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-α). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-α production, while the less pathogenic R3B did not. The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to activate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs, which contributes to pathogenesis.IMPORTANCEPlasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis remain unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-α production, while most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings thus provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs and contributes to HIV-1 pathogenesis. These novel findings will be of great interest to those working on the roles of IFN and pDCs in HIV-1 pathogenesis in general and on the interaction of HIV-1 with pDCs in particular.
APA, Harvard, Vancouver, ISO, and other styles
32

Martı́n, Julio, Celia C. LaBranche, and Francisco González-Scarano. "Differential CD4/CCR5 Utilization, gp120 Conformation, and Neutralization Sensitivity between Envelopes from a Microglia-Adapted Human Immunodeficiency Virus Type 1 and Its Parental Isolate." Journal of Virology 75, no. 8 (April 15, 2001): 3568–80. http://dx.doi.org/10.1128/jvi.75.8.3568-3580.2001.

Full text
Abstract:
ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infects and induces syncytium formation in microglial cells from the central nervous system (CNS). A primary isolate (HIV-1BORI) was sequentially passaged in cultured microglia, and the isolate recovered (HIV-1BORI-15) showed high levels of fusion and replicated more efficiently in microglia (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. González-Scarano, J. Virol. 70:7654–7662, 1996). The parent and adapted viruses used CCR5 as coreceptor. Recombinant viruses demonstrated that the syncytium-inducing phenotype was associated with four amino acid differences in the V1/V2 region of the viral gp120 (J. T. C. Shieh, J. Martin, G. Baltuch, M. H. Malim, and F. González-Scarano, J. Virol. 74:693–701, 2000). We produced luciferase-reporter, env-pseudotyped viruses using plasmids containing env sequences from HIV-1BORI, HIV-1BORI-15, and the V1/V2 region of HIV-1BORI-15 in the context of HIV-1BORI env (named rBORI, rB15, and rV1V2, respectively). The pseudotypes were used to infect cells expressing various amounts of CD4 and CCR5 on the surface. In contrast to the parent recombinant, the rB15 and rV1V2 pseudotypes retained their infectability in cells expressing low levels of CD4 independent of the levels of CCR5, and they infected cells expressing CD4 with a chimeric coreceptor containing the third extracellular loop of CCR2b in the context of CCR5 or a CCR5 Δ4 amino-terminal deletion mutant. The VH-rB15 and VH-rV1V2 recombinant viruses were more sensitive to neutralization by a panel of HIV-positive sera than was VH-rBORI. Interestingly, the CD4-induced 17b epitope on gp120 was more accessible in the rB15 and rV1V2 pseudotypes than in rBORI, even before CD4 binding, and concomitantly, the rB15 and rV1V2 pseudotypes were more sensitive to neutralization with the human 17b monoclonal antibody. Adaptation to growth in microglia—cells that have reduced expression of CD4 in comparison with other cell types—appears to be associated with changes in gp120 that modify its ability to utilize CD4 and CCR5. Changes in the availability of the 17b epitope indicate that these affect conformation. These results imply that the process of adaptation to certain tissue types such as the CNS directly affects the interaction of HIV-1 envelope glycoproteins with cell surface components and with humoral immune responses.
APA, Harvard, Vancouver, ISO, and other styles
33

Sagnier, Sophie, Coralie F. Daussy, Sophie Borel, Véronique Robert-Hebmann, Mathias Faure, Fabien P. Blanchet, Bruno Beaumelle, Martine Biard-Piechaczyk, and Lucile Espert. "Autophagy Restricts HIV-1 Infection by Selectively Degrading Tat in CD4+T Lymphocytes." Journal of Virology 89, no. 1 (October 22, 2014): 615–25. http://dx.doi.org/10.1128/jvi.02174-14.

Full text
Abstract:
ABSTRACTAutophagy is a ubiquitous mechanism involved in the lysosomal-mediated degradation of cellular components when they are engulfed in vacuoles called autophagosomes. Autophagy is also recognized as an important regulator of the innate and adaptive immune responses against numerous pathogens, which have, therefore, developed strategies to block or use the autophagy machinery to their own benefit. Upon human immunodeficiency virus type 1 (HIV-1) infection, viral envelope (Env) glycoproteins induce autophagy-dependent apoptosis of uninfected bystander CD4+T lymphocytes, a mechanism likely contributing to the loss of CD4+T cells. In contrast, in productively infected CD4+T cells, HIV-1 is able to block Env-induced autophagy in order to avoid its antiviral effect. To date, nothing is known about how autophagy restricts HIV-1 infection in CD4+T lymphocytes. Here, we report that autophagy selectively degrades the HIV-1 transactivator Tat, a protein essential for viral transcription and virion production. We demonstrated that this selective autophagy-mediated degradation of Tat relies on its ubiquitin-independent interaction with the p62/SQSTM1 adaptor. Taken together, our results provide evidence that the anti-HIV effect of autophagy is specifically due to the degradation of the viral transactivator Tat but that this process is rapidly counteracted by the virus to favor its replication and spread.IMPORTANCEAutophagy is recognized as one of the most ancient and conserved mechanisms of cellular defense against invading pathogens. Cross talk between HIV-1 and autophagy has been demonstrated depending on the virally challenged cell type, and HIV-1 has evolved strategies to block this process to replicate efficiently. However, the mechanisms by which autophagy restricts HIV-1 infection remain to be elucidated. Here, we report that the HIV-1 transactivator Tat, a protein essential for viral replication, is specifically degraded by autophagy in CD4+T lymphocytes. Both Tat present in infected cells and incoming Tat secreted from infected cells are targeted for autophagy degradation through a ubiquitin-independent interaction with the autophagy receptor p62/SQSTM1. This study is the first to demonstrate that selective autophagy can be an antiviral process by degrading a viral transactivator. In addition, the results could help in the design of new therapies against HIV-1 by specifically targeting this mechanism.
APA, Harvard, Vancouver, ISO, and other styles
34

Pizzato, Massimo, Elena Popova, and Heinrich G. Göttlinger. "Nef Can Enhance the Infectivity of Receptor-Pseudotyped Human Immunodeficiency Virus Type 1 Particles." Journal of Virology 82, no. 21 (August 20, 2008): 10811–19. http://dx.doi.org/10.1128/jvi.01150-08.

Full text
Abstract:
ABSTRACT Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.
APA, Harvard, Vancouver, ISO, and other styles
35

Yang, Xinzhen, Svetla Kurteva, Xinping Ren, Sandra Lee, and Joseph Sodroski. "Stoichiometry of Envelope Glycoprotein Trimers in the Entry of Human Immunodeficiency Virus Type 1." Journal of Virology 79, no. 19 (October 1, 2005): 12132–47. http://dx.doi.org/10.1128/jvi.79.19.12132-12147.2005.

Full text
Abstract:
ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.
APA, Harvard, Vancouver, ISO, and other styles
36

Wyss, Stéphanie, Antony S. Dimitrov, Frédéric Baribaud, Terri G. Edwards, Robert Blumenthal, and James A. Hoxie. "Regulation of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Fusion by a Membrane-Interactive Domain in the gp41 Cytoplasmic Tail." Journal of Virology 79, no. 19 (October 1, 2005): 12231–41. http://dx.doi.org/10.1128/jvi.79.19.12231-12241.2005.

Full text
Abstract:
ABSTRACT Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this “inside-out” regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.
APA, Harvard, Vancouver, ISO, and other styles
37

Le Tortorec, Anna, and Stuart J. D. Neil. "Antagonism to and Intracellular Sequestration of Human Tetherin by the Human Immunodeficiency Virus Type 2 Envelope Glycoprotein." Journal of Virology 83, no. 22 (September 9, 2009): 11966–78. http://dx.doi.org/10.1128/jvi.01515-09.

Full text
Abstract:
ABSTRACT Tetherin (CD317/BST-2), an interferon-induced membrane protein, restricts the release of nascent retroviral particles from infected cell surfaces. While human immunodeficiency virus type 1 (HIV-1) encodes the accessory gene vpu to overcome the action of tetherin, the lineage of primate lentiviruses that gave rise to HIV-2 does not. It has been previously reported that the HIV-2 envelope glycoprotein has a Vpu-like function in promoting virus release. Here we demonstrate that the HIV-2 Rod envelope glycoprotein (HIV-2 Rod Env) is a tetherin antagonist. Expression of HIV-2 Rod Env, but not that of HIV-1 or the closely related simian immunodeficiency virus (SIV) SIVmac1A11, counteracts tetherin-mediated restriction of Vpu-defective HIV-1 in a cell-type-specific manner. This correlates with the ability of the HIV-2 Rod Env to mediate cell surface downregulation of tetherin. Antagonism requires an endocytic motif conserved across HIV/SIV lineages in the gp41 cytoplasmic tail, but specificity for tetherin is governed by extracellular determinants in the mature Env protein. Coimmunoprecipitation studies suggest an interaction between HIV-2 Rod Env and tetherin, but unlike studies with Vpu, we found no evidence of tetherin degradation. In the presence of HIV-2 Rod Env, tetherin localization is restricted to the trans-Golgi network, suggesting Env-mediated effects on tetherin trafficking sequester it from virus assembly sites on the plasma membrane. Finally, we recapitulated these observations in HIV-2-infected CD4+ T-cell lines, demonstrating that tetherin antagonism and sequestration occur at physiological levels of Env expression during virus replication.
APA, Harvard, Vancouver, ISO, and other styles
38

Chakrabarti, Lisa A., Tijana Ivanovic, and Cecilia Cheng-Mayer. "Properties of the Surface Envelope Glycoprotein Associated with Virulence of Simian-Human Immunodeficiency Virus SHIVSF33A Molecular Clones." Journal of Virology 76, no. 4 (February 15, 2002): 1588–99. http://dx.doi.org/10.1128/jvi.76.4.1588-1599.2002.

Full text
Abstract:
ABSTRACT In vivo adaptation of simian-human immunodeficiency virus (SHIV) clone SHIVSF33 resulted in the emergence of pathogenic isolate SHIVSF33A, which caused a rapid and severe CD4+ T-cell depletion when inoculated into rhesus macaques. Two molecular clones generated by inserting the env V1-to-V5 region amplified from SHIVSF33A-infected animals into the parental SHIVSF33 genome retained a pathogenic phenotype. The gp120 envelope glycoproteins of pathogenic clones SHIVSF33A2 and SHIVSF33A5 conferred a threefold increase in viral entry and fusogenicity compared to the parental glycoprotein. Changes in gp120 were also responsible for a higher replication capacity and cytopathicity in primary CD4+ T-cell cultures. Last, gp120 carried the determinants of SHIVSF33A neutralization resistance. Thus, changes in SHIVSF33A gp120 produced a set of properties that could account for the pathogenic phenotype observed in vivo. Measurement of antibody binding to SHIVSF33A viral particles revealed an increased exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody in a region that was shown to contribute to coreceptor binding. Exposure of this epitope occurred in the absence of CD4 binding, suggesting that the envelope glycoprotein of pathogenic SHIVSF33A clones folded in a conformation that was primed for interaction with CXCR4 or for the subsequent step of fusion.
APA, Harvard, Vancouver, ISO, and other styles
39

Kramer, Susanne, Peter Buontempo, Sony Agrawal, and Robert Ralston. "Imaging-Based Assay for Identification and Characterization of Inhibitors of CXCR4-Tropic HIV-1 Envelope-Dependent Cell-Cell Fusion." Journal of Biomolecular Screening 16, no. 6 (April 7, 2011): 668–75. http://dx.doi.org/10.1177/1087057111403480.

Full text
Abstract:
Infection of certain cell types by HIV results in formation of syncytia. This process can be blocked by antibodies or compounds that prevent interaction of viral envelope protein with host cell receptors. Here the authors describe an automated imaging-based assay for inhibitors of cell-cell fusion mediated by interaction of HIV gp120 with CXCR4 coreceptor. The assay quantifies syncytia formation between U87MG astrocytoma cells constitutively expressing CD4/CXCR4 and morphologically distinct Jurkat T lymphoma cells inducibly expressing HIV env. Each cell type was differentially labeled with vital dyes. Fusion was quantified by measuring size, shape, and color of Jurkat cells and Jurkat-harboring cell syncytia. Dose–response experiments with reference inhibitors AMD 3100 and KRH-1636 yielded potencies consistent with those obtained using standard antiviral assays. This assay complements virus-based infectivity assays for identification of inhibitors of membrane fusion events triggered by interaction of HIV gp120 with host CXCR4.
APA, Harvard, Vancouver, ISO, and other styles
40

Jacquemard, Célien, Florian Koensgen, Philippe Colin, Bernard Lagane, and Esther Kellenberger. "Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor." Viruses 13, no. 7 (July 18, 2021): 1395. http://dx.doi.org/10.3390/v13071395.

Full text
Abstract:
The chemokine receptor CCR5 is a key player in HIV-1 infection. The cryo-EM 3D structure of HIV-1 envelope glycoprotein (Env) subunit gp120 in complex with CD4 and CCR5 has provided important structural insights into HIV-1/host cell interaction, yet it has not explained the signaling properties of Env nor the fact that CCR5 exists in distinct forms that show distinct Env binding properties. We used classical molecular dynamics and site-directed mutagenesis to characterize the CCR5 conformations stabilized by four gp120s, from laboratory-adapted and primary HIV-1 strains, and which were previously shown to bind differentially to distinct CCR5 forms and to exhibit distinct cellular tropisms. The comparative analysis of the simulated structures reveals that the different gp120s do indeed stabilize CCR5 in different conformational ensembles. They differentially reorient extracellular loops 2 and 3 of CCR5 and thus accessibility to the transmembrane binding cavity. They also reshape this cavity differently and give rise to different positions of intracellular ends of transmembrane helices 5, 6 and 7 of the receptor and of its third intracellular loop, which may in turn influence the G protein binding region differently. These results suggest that the binding of gp120s to CCR5 may have different functional outcomes, which could result in different properties for viruses.
APA, Harvard, Vancouver, ISO, and other styles
41

Lambert, Sophie, Manuella Bouttier, Roger Vassy, Michel Seigneuret, Cari Petrow-Sadowski, Sébastien Janvier, Nikolaus Heveker, et al. "HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165." Blood 113, no. 21 (May 21, 2009): 5176–85. http://dx.doi.org/10.1182/blood-2008-04-150342.

Full text
Abstract:
AbstractHuman T-cell lymphotropic virus type 1 (HTLV-1) entry involves the interaction between the surface (SU) subunit of the Env proteins and cellular receptor(s). Previously, our laboratories demonstrated that heparan sulfate proteoglycans (HSPGs) and neuropilin-1 (NRP-1), a receptor of VEGF165, are essential for HTLV-1 entry. Here we investigated whether, as when binding VEGF165, HSPGs and NRP-1 work in concert during HTLV-1 entry. VEGF165 binds to the b domain of NRP-1 through both HSPG-dependent and -independent interactions, the latter involving its exon 8. We show that VEGF165 is a selective competitor of HTLV-1 entry and that HTLV-1 mimics VEGF165 to recruit HSPGs and NRP-1: (1) the NRP-1 b domain is required for HTLV-1 binding; (2) SU binding to target cells is blocked by the HSPG-binding domain of VEGF165; (3) the formation of Env/NRP-1 complexes is enhanced by HSPGs; and (4) the HTLV SU contains a motif homologous to VEGF165 exon 8. This motif directly binds to NRP-1 and is essential for HTLV-1 binding to, internalization into, and infection of CD4+ T cells and dendritic cells. These findings demonstrate that HSPGs and NRP-1 function as HTLV-1 receptors in a cooperative manner and reveal an unexpected mimicry mechanism that may have major implications in vivo.
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, George, Andrea Bertolotti-Ciarlet, Beth Haggarty, Josephine Romano, Katrina M. Nolan, George J. Leslie, Andrea P. O. Jordan, et al. "Replication-Competent Variants of Human Immunodeficiency Virus Type 2 Lacking the V3 Loop Exhibit Resistance to Chemokine Receptor Antagonists." Journal of Virology 81, no. 18 (July 3, 2007): 9956–66. http://dx.doi.org/10.1128/jvi.00385-07.

Full text
Abstract:
ABSTRACT Entry of human immunodeficiency virus type 1 (HIV-1) and HIV-2 requires interactions between the envelope glycoprotein (Env) on the virus and CD4 and a chemokine receptor, either CCR5 or CXCR4, on the cell surface. The V3 loop of the HIV gp120 glycoprotein plays a critical role in this process, determining tropism for CCR5- or CXCR4-expressing cells, but details of how V3 interacts with these receptors have not been defined. Using an iterative process of deletion mutagenesis and in vitro adaptation of infectious viruses, variants of HIV-2 were derived that could replicate without V3, either with or without a deletion of the V1/V2 variable loops. The generation of these functional but markedly minimized Envs required adaptive changes on the gp120 core and gp41 transmembrane glycoprotein. V3-deleted Envs exhibited tropism for both CCR5- and CXCR4-expressing cells, suggesting that domains on the gp120 core were mediating interactions with determinants shared by both coreceptors. Remarkably, HIV-2 Envs with V3 deletions became resistant to small-molecule inhibitors of CCR5 and CXCR4, suggesting that these drugs inhibit wild-type viruses by disrupting a specific V3 interaction with the coreceptor. This study represents a proof of concept that HIV Envs lacking V3 alone or in combination with V1/V2 that retain functional domains required for viral entry can be derived. Such minimized Envs may be useful in understanding Env function, screening for new inhibitors of gp120 core interactions with chemokine receptors, and designing novel immunogens for vaccines.
APA, Harvard, Vancouver, ISO, and other styles
43

Lynch, Rebecca M., Patrick Wong, Lillian Tran, Sijy O'Dell, Martha C. Nason, Yuxing Li, Xueling Wu, and John R. Mascola. "HIV-1 Fitness Cost Associated with Escape from the VRC01 Class of CD4 Binding Site Neutralizing Antibodies." Journal of Virology 89, no. 8 (January 28, 2015): 4201–13. http://dx.doi.org/10.1128/jvi.03608-14.

Full text
Abstract:
ABSTRACTBroadly neutralizing antibodies (bNAbs) have been isolated from selected HIV-1-infected individuals and shown to bind to conserved sites on the envelope glycoprotein (Env). However, circulating plasma virus in these donors is usually resistant to autologous isolated bNAbs, indicating that during chronic infection, HIV-1 can escape from even broadly cross-reactive antibodies. Here, we evaluate if such viral escape is associated with an impairment of viral replication. Antibodies of the VRC01 class target the functionally conserved CD4 binding site and share a structural mode of gp120 recognition that includes mimicry of the CD4 receptor. We examined naturally occurring VRC01-sensitive and -resistant viral strains, as well as their mutated sensitive or resistant variants, and tested point mutations in the backbone of the VRC01-sensitive isolate YU2. In several cases, VRC01 resistance was associated with a reduced efficiency of CD4-mediated viral entry and diminished viral replication. Several mutations, alone or in combination, in the loop D or β23-V5 region of Env conferred a high level of resistance to VRC01 class antibodies, suggesting a preferred escape pathway. We further mapped the VRC01-induced escape pathwayin vivousing Envs from donor 45, from whom antibody VRC01 was isolated. Initial escape mutations, including the addition of a key glycan, occurred in loop D and were associated with impaired viral replication; however, compensatory mutations restored full replicative fitness. These data demonstrate that escape from VRC01 class antibodies can diminish viral replicative fitness, but compensatory changes may explain the limited impact of neutralizing antibodies during the course of natural HIV-1 infection.IMPORTANCESome antibodies that arise during natural HIV-1 infection bind to conserved regions on the virus envelope glycoprotein and potently neutralize the majority of diverse HIV-1 strains. The VRC01 class of antibodies blocks the conserved CD4 receptor binding site interaction that is necessary for viral entry, raising the possibility that viral escape from antibody neutralization might exert detrimental effects on viral function. Here, we show that escape from VRC01 class antibodies can be associated with impaired viral entry and replication; however, during the course of natural infection, compensatory mutations restore the ability of the virus to replicate normally.
APA, Harvard, Vancouver, ISO, and other styles
44

McCoy, Laura E., Anna Forsman Quigley, Nika M. Strokappe, Bianca Bulmer-Thomas, Michael S. Seaman, Daniella Mortier, Lucy Rutten, et al. "Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization." Journal of Experimental Medicine 209, no. 6 (May 28, 2012): 1091–103. http://dx.doi.org/10.1084/jem.20112655.

Full text
Abstract:
Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides.
APA, Harvard, Vancouver, ISO, and other styles
45

Durham, Natasha D., and Benjamin K. Chen. "HIV-1 Cell-Free and Cell-to-Cell Infections Are Differentially Regulated by Distinct Determinants in the Env gp41 Cytoplasmic Tail." Journal of Virology 89, no. 18 (July 1, 2015): 9324–37. http://dx.doi.org/10.1128/jvi.00655-15.

Full text
Abstract:
ABSTRACTThe HIV-1 envelope (Env) glycoprotein mediates viral entry during both cell-free and cell-to-cell infection of CD4+T cells. The highly conserved long cytoplasmic tail (CT) of Env is required in a cell type-dependent manner for optimal infectivity of cell-free virus. To probe the role of the CT in cell-to-cell infection, we tested a panel of mutations in the CT region that maintain or attenuate cell-free infection to investigate whether the functions of the CT are conserved during cell-free and cell-to-cell infection. The mutations tested included truncations of structural motifs in the gp41 CT and two point mutations in lentiviral lytic peptide 3 (LLP-3) previously described as disrupting the infectivity of cell-free virus. We found that small truncations of 28 to 43 amino acids (aa) or two LLP-3 point mutations, YW_SL and LL_RQ, severely impaired single-round cell-free infectivity 10-fold or more relative to wild-type full-length CT. These mutants showed a modest 2-fold reduction in cell-to-cell infection assays. Conversely, large truncations of 93 to 124 aa severely impaired cell-to-cell infectivity 20-fold or more while resulting in a 50% increase in infectivity of cell-free viral particles when produced in 293T cells. Intermediate truncations of 46 to 90 aa showed profound impairment of both modes of infection. Our results show that the abilities of Env to support cell-free and cell-to-cell infection are genetically distinct. These differences are cell type dependent for large-CT-truncation mutants. Additionally, point mutants in LLP-3 can maintain multiround propagation from cell-to-cell in primary CD4+T cells.IMPORTANCEThe functions of HIV Env gp41 CT remain poorly understood despite being widely studied in the context of cell-free infection. We have identified domains of the gp41 CT responsible for striking selective deficiencies in either cell-free or cell-to-cell infectivity. These differences may reflect a different intrinsic regulatory influence of the CT on cell-associated versus particle-associated Env or differential interaction with host or viral proteins. Our findings provide novel insight into the key regulatory potential of the gp41 CT in cell-free and cell-to-cell HIV-1 infection, particularly for short-truncation mutants of ≤43 amino acids or mutants with point mutations in the LLP-3 helical domain of the CT, which are able to propagate via cell-to-cell infection in the absence of infectious cell-free virus production. These mutants may also serve as tools to further define the contributions of cell-free and cell-to-cell infectionin vitroandin vivo.
APA, Harvard, Vancouver, ISO, and other styles
46

Séror, Claire, Marie-Thérèse Melki, Frédéric Subra, Syed Qasim Raza, Marlène Bras, Héla Saïdi, Roberta Nardacci, et al. "Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection." Journal of Experimental Medicine 208, no. 9 (August 22, 2011): 1823–34. http://dx.doi.org/10.1084/jem.20101805.

Full text
Abstract:
Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches.
APA, Harvard, Vancouver, ISO, and other styles
47

Strokappe, Nika M., Miriam Hock, Lucy Rutten, Laura E. Mccoy, Jaap W. Back, Christophe Caillat, Matthias Haffke, Robin A. Weiss, Winfried Weissenhorn, and Theo Verrips. "Super Potent Bispecific Llama VHH Antibodies Neutralize HIV via a Combination of gp41 and gp120 Epitopes." Antibodies 8, no. 2 (June 18, 2019): 38. http://dx.doi.org/10.3390/antib8020038.

Full text
Abstract:
Broad and potent neutralizing llama single domain antibodies (VHH) against HIV-1 targeting the CD4 binding site (CD4bs) have previously been isolated upon llama immunization. Here we describe the epitopes of three additional VHH groups selected from phage libraries. The 2E7 group binds to a new linear epitope in the first heptad repeat of gp41 that is only exposed in the fusion-intermediate conformation. The 1B5 group competes with co-receptor binding and the 1F10 group interacts with the crown of the gp120 V3 loop, occluded in native Env. We present biophysical and structural details on the 2E7 interaction with gp41. In order to further increase breadth and potency, we constructed bi-specific VHH. The combination of CD4bs VHH (J3/3E3) with 2E7 group VHH enhanced strain-specific neutralization with potencies up to 1400-fold higher than the mixture of the individual VHHs. Thus, these new bivalent VHH are potent new tools to develop therapeutic approaches or microbicide intervention.
APA, Harvard, Vancouver, ISO, and other styles
48

Dragic, Tatjana, Alexandra Trkola, Steven W. Lin, Kirsten A. Nagashima, Francis Kajumo, Lu Zhao, William C. Olson, et al. "Amino-Terminal Substitutions in the CCR5 Coreceptor Impair gp120 Binding and Human Immunodeficiency Virus Type 1 Entry." Journal of Virology 72, no. 1 (January 1, 1998): 279–85. http://dx.doi.org/10.1128/jvi.72.1.279-285.1998.

Full text
Abstract:
ABSTRACT The CC-chemokine receptor CCR5 is required for the efficient fusion of macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains with the plasma membrane of CD4+ cells and interacts directly with the viral surface glycoprotein gp120. Although receptor chimera studies have provided useful information, the domains of CCR5 that function for HIV-1 entry, including the site of gp120 interaction, have not been unambiguously identified. Here, we use site-directed, alanine-scanning mutagenesis of CCR5 to show that substitutions of the negatively charged aspartic acid residues at positions 2 and 11 (D2A and D11A) and a glutamic acid residue at position 18 (E18A), individually or in combination, impair or abolish CCR5-mediated HIV-1 entry for the ADA and JR-FL M-tropic strains and the DH123 dual-tropic strain. These mutations also impair Env-mediated membrane fusion and the gp120-CCR5 interaction. Of these three residues, only D11 is necessary for CC-chemokine-mediated inhibition of HIV-1 entry, which is, however, also dependent on other extracellular CCR5 residues. Thus, the gp120 and CC-chemokine binding sites on CCR5 are only partially overlapping, and the former site requires negatively charged residues in the amino-terminal CCR5 domain.
APA, Harvard, Vancouver, ISO, and other styles
49

Fernàndez, Guerau, Anuska Llano, Miriam Esgleas, Bonaventura Clotet, José A. Esté, and Miguel Angel Martínez. "Purifying selection of CCR5-tropic human immunodeficiency virus type 1 variants in AIDS subjects that have developed syncytium-inducing, CXCR4-tropic viruses." Journal of General Virology 87, no. 5 (May 1, 2006): 1285–94. http://dx.doi.org/10.1099/vir.0.81722-0.

Full text
Abstract:
Human immunodeficiency virus type 1 (HIV-1) infection is established by virus variants that use the CCR5 co-receptor for entry (CCR5-tropic or R5 variants), whereas viruses that use CXCR4 as co-receptor (CXCR4-tropic or X4 variants) emerge during disease progression in approximately 50 % of infected subjects. X4 variants may have a higher fitness ex vivo and their detection is usually accompanied by faster T-cell depletion and the onset of AIDS in HIV-1-positive individuals. Here, the relationship between the sequence variation of the HIV-1 env V3–V5 region and positive selective pressure on R5 and X4 variants from infected subjects with CD4 T cell counts below 200 cells μl−1 was studied. A correlation was found between genetic distance and CD4+ cell count at late stages of the disease. R5 variants that co-existed with X4 variants were significantly less heterogeneous than R5 variants from subjects without X4 variants (P<0·0001). Similarly, X4 variants had a significantly higher diversity than R5 variants (P<0·0001), although residues under positive selection had a similar distribution pattern in both variants. Therefore, both X4 and R5 variants were subjected to high selective pressures from the host. Furthermore, the interaction between X4 and R5 variants within the same subject resulted in a purifying selection on R5 variants, which only survived as a homogeneous virus population. These results indicate that R5 variants from X4 phenotype samples were highly homogeneous and under weakly positive selective pressures. In contrast, R5 variants from R5 phenotype samples were highly heterogeneous and subject to positive selective pressures.
APA, Harvard, Vancouver, ISO, and other styles
50

Sakaida, Hitoshi, Toshiyuki Hori, Akihito Yonezawa, Akihiko Sato, Yoshitaka Isaka, Osamu Yoshie, Toshio Hattori, and Takashi Uchiyama. "T-Tropic Human Immunodeficiency Virus Type 1 (HIV-1)-Derived V3 Loop Peptides Directly Bind to CXCR-4 and Inhibit T-Tropic HIV-1 Infection." Journal of Virology 72, no. 12 (December 1, 1998): 9763–70. http://dx.doi.org/10.1128/jvi.72.12.9763-9770.1998.

Full text
Abstract:
ABSTRACT Certain types of chemokine receptors have been identified as coreceptors for HIV-1 infection. The process of viral entry is initiated by the interaction between an envelope protein gp120 of HIV-1, CD4, and one of the relevant coreceptors. To understand the precise mechanism of the Env-mediated fusion and entry of HIV-1, we examined whether the V3 region of gp120 of T-cell line tropic (T-tropic) virus directly interacts with the coreceptor, CXCR-4, by using five synthetic V3 peptides: two cyclized V3 peptides (V3-BH10 and V3-ELI) which correspond to the V3 regions of the T-tropic HIV-1 IIIB and HIV-1 ELI strains, respectively, a linear V3 peptide (CTR36) corresponding to that of HIV-1 IIIB strain; and cyclized V3 peptides corresponding to that of the macrophage-tropic (M-tropic) HIV-1 ADA strain (V3-ADA) or the dualtropic HIV-1 89.6 strain (V3-89.6). FACScan analysis with a CXCR-4+ human B-cell line, JY, showed that V3-BH10, V3-ELI, and V3-89.6 but not CTR36 or V3-ADA blocked the binding of IVR7, an anti-CXCR-4 monoclonal antibody (MAb), to CXCR-4 with different magnitudes in a dose-dependent manner, while none of the V3 peptides influenced binding of an anti-CD19 MAb at all. Next, the effects of the V3 peptides on SDF-1β-induced transient increases in intracellular Ca2+ were investigated. Three V3 peptides (V3-BH10, V3-ELI, and V3-89.6) prevented Ca2+mobilization. Furthermore, the three peptides inhibited infection by T-tropic HIV-1 in a dose-dependent manner as revealed by an MTT assay and a reverse transcriptase assay, while the other peptides had no effects. These results present direct evidence that the V3 loop of gp120 of T-tropic HIV-1 can interact with its coreceptor CXCR-4 independently of the V1/V2 regions of gp120 or cellular CD4.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography