Journal articles on the topic 'Interaction spin phonon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interaction spin phonon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
PAUL, PRABASAJ, and DANIEL C. MATTIS. "EXTINCTION OF SPIN INTERACTIONS IN THE 2D KONDO LATTICE." International Journal of Modern Physics B 09, no. 24 (1995): 3199–208. http://dx.doi.org/10.1142/s0217979295001221.
Full textYavorsky, Maxim, Dmitriy Vikulin, Constantine Alexeyev, and Vladimir Belotelov. "Photon–phonon spin–orbit interaction in optical fibers." Optica 8, no. 5 (2021): 638. http://dx.doi.org/10.1364/optica.416498.
Full textLoa, I., S. Gronemeyer, C. Thomsen, and R. K. Kremer. "Spin gap and spin-phonon interaction in CuGeO3." Solid State Communications 99, no. 4 (1996): 231–35. http://dx.doi.org/10.1016/0038-1098(96)00303-1.
Full textWESSELINOWA, J. M., and A. T. APOSTOLOV. "DYNAMICAL STRUCTURE FACTOR FOR s - f MODEL WITH SPIN-PHONON INTERACTION." International Journal of Modern Physics B 10, no. 22 (1996): 2797–809. http://dx.doi.org/10.1142/s0217979296001264.
Full textApostolov, A. T., I. N. Apostolova, and J. M. Wesselinowa. "Influence of spin–phonon interactions and spin-reorientation transitions on the phonon properties of RCrO3." Modern Physics Letters B 31, no. 03 (2017): 1750009. http://dx.doi.org/10.1142/s0217984917500099.
Full textKOO, JE HUAN, and GUANGSUP CHO. "METALLIC FERROMAGNETISM DRIVEN BY PHONON-ENHANCED SPIN FLUCTUATIONS." International Journal of Modern Physics B 21, no. 06 (2007): 857–69. http://dx.doi.org/10.1142/s021797920703676x.
Full textTartakovskaya, E. V., and B. A. Ivanov. "Spin-phonon interaction in thin magnetic films." Physica B: Condensed Matter 263-264 (March 1999): 769–71. http://dx.doi.org/10.1016/s0921-4526(98)01458-6.
Full textCao, Xian-Sheng. "Anharmonic phonon properties in Eu0.5Ba0.5TiO3." Materials Science-Poland 36, no. 1 (2018): 141–44. http://dx.doi.org/10.1515/msp-2018-0003.
Full textChân, Nguy??ñ Ngoc. "Spin-Phonon Interaction beyond the Limit of Spin-wave Approximation." Annalen der Physik 500, no. 6 (1988): 404–8. http://dx.doi.org/10.1002/andp.19885000604.
Full textSeo, H., M. Kuwabara, and M. Ogata. "Co-existence of charge order and spin Peierls lattice distortion in one-dimensional organic compounds." Journal de Physique IV 12, no. 9 (2002): 205–9. http://dx.doi.org/10.1051/jp4:20020396.
Full textLunghi, Alessandro, and Stefano Sanvito. "How do phonons relax molecular spins?" Science Advances 5, no. 9 (2019): eaax7163. http://dx.doi.org/10.1126/sciadv.aax7163.
Full textLyapilin, Igor, and Mikhail Okorokov. "THE INFLUENCE OF “INJECTED” AND “THERMAL” MAGNONS ON A SPIN WAVE CURRENT AND DRAG EFFECT IN HYBRID STRUCTURES." EPJ Web of Conferences 185 (2018): 01022. http://dx.doi.org/10.1051/epjconf/201818501022.
Full textJeong, Seung Gyo, Soo Yeon Lim, Jiwoong Kim, Sungkyun Park, Hyeonsik Cheong, and Woo Seok Choi. "Spin–phonon coupling in epitaxial SrRuO3 heterostructures." Nanoscale 12, no. 26 (2020): 13926–32. http://dx.doi.org/10.1039/d0nr03282d.
Full textXin, Wei, Chao Han, and Eerdunchaolu. "Influence of magnetic field and Rashba spin–orbit coupling on strong-coupling magnetopolarons in quantum disks." International Journal of Modern Physics B 28, no. 27 (2014): 1450185. http://dx.doi.org/10.1142/s0217979214501859.
Full textGallay, R., and J. J. van der Klink. "Spin-phonon interaction in small particles of MgO:Ni2+." Physical Review B 38, no. 5 (1988): 3443–48. http://dx.doi.org/10.1103/physrevb.38.3443.
Full textLockwood, D. J. "Spin–phonon interaction and mode softening in NiF2." Low Temperature Physics 28, no. 7 (2002): 505–9. http://dx.doi.org/10.1063/1.1496657.
Full textPiotrowski, E., and J. Łuczka. "Simple Derivation of the Direct Spin-Phonon Interaction." physica status solidi (b) 136, no. 1 (1986): K27—K31. http://dx.doi.org/10.1002/pssb.2221360150.
Full textKochelaev, B. I., A. M. Safina, A. Shengelaya, H. Keller, K. A. Müller, and K. Conder. "Three-Spin-Polarons and Their Elastic Interaction in Cuprates." Modern Physics Letters B 17, no. 10n12 (2003): 415–21. http://dx.doi.org/10.1142/s0217984903005433.
Full textApostolov, A. T., I. N. Apostolova, and J. M. Wesselinowa. "Size and doping dependence of the phonon properties of SnO2 nanoparticles." Modern Physics Letters B 32, no. 21 (2018): 1850250. http://dx.doi.org/10.1142/s0217984918502500.
Full textMARTIN, THIERRY, and DANIEL LOSS. "PHASE DIAGRAM FOR A LUTTINGER LIQUID COUPLED TO PHONONS IN ONE DIMENSION." International Journal of Modern Physics B 09, no. 04n05 (1995): 495–533. http://dx.doi.org/10.1142/s0217979295000185.
Full textAcquarone, M., M. Cuoco, and C. Noce. "Spin and Charge Correlations in the Extended Hubbard-Holstein Model." International Journal of Modern Physics B 13, no. 09n10 (1999): 1183–88. http://dx.doi.org/10.1142/s0217979299001156.
Full textPopova, M. N. "Spectroscopy ofRFe3(BO3)4multiferroics: phase transitions, spin-phonon interaction, coupled electron-phonon modes." EPJ Web of Conferences 132 (December 13, 2016): 01010. http://dx.doi.org/10.1051/epjconf/201713201010.
Full textMarn, F. P., and H. Suhl. "Spin-orbit coupling modulated by the electron-phonon interaction." Physical Review Letters 63, no. 4 (1989): 442–44. http://dx.doi.org/10.1103/physrevlett.63.442.
Full textChishko, K. A., and A. S. Rybalko. "Spin–Spin and Spin–Phonon Interaction as a Nature of Microwave Absorption in He II." Journal of Low Temperature Physics 196, no. 1-2 (2019): 21–27. http://dx.doi.org/10.1007/s10909-019-02173-y.
Full textYakut, H., E. Tabar, and G. Hoşgör. "Effects of the isoscalar and isovector interaction on the ground-state magnetic moments of odd-mass 137–145Ce nuclei." Canadian Journal of Physics 97, no. 11 (2019): 1187–90. http://dx.doi.org/10.1139/cjp-2018-0697.
Full textVartanian, A. L., A. L. Asatryan, A. G. Stepanyan, K. A. Vardanyan, and A. A. Kirakosyan. "Effect of spin–orbit coupling on the hot-electron energy relaxation in nanowires." International Journal of Modern Physics B 34, no. 32 (2020): 2050322. http://dx.doi.org/10.1142/s0217979220503221.
Full textPines, David. "Effective interactions, elementary excitations, and transport in the helium liquids." Canadian Journal of Physics 65, no. 11 (1987): 1357–67. http://dx.doi.org/10.1139/p87-215.
Full textSingh, Karan, Mohit K. Sharma, and K. Mukherjee. "Spin-phonon coupling and exchange interaction in Gd substituted YFe0.5Cr0.5O3." Journal of Magnetism and Magnetic Materials 447 (February 2018): 26–31. http://dx.doi.org/10.1016/j.jmmm.2017.09.042.
Full textNunner, T. S., J. Schmalian, and K. H. Bennemann. "Influence of electron-phonon interaction on spin-fluctuation-induced superconductivity." Physical Review B 59, no. 13 (1999): 8859–68. http://dx.doi.org/10.1103/physrevb.59.8859.
Full textChen, X. K., J. C. Irwin, and J. P. Franck. "Evidence for a strong spin-phonon interaction in cupric oxide." Physical Review B 52, no. 18 (1995): R13130—R13133. http://dx.doi.org/10.1103/physrevb.52.r13130.
Full textLockwood, D. J., and M. G. Cottam. "The spin‐phonon interaction in FeF2and MnF2studied by Raman spectroscopy." Journal of Applied Physics 64, no. 10 (1988): 5876–78. http://dx.doi.org/10.1063/1.342186.
Full textMitrović, B., and W. E. Pickett. "Effect of electron-phonon interaction on spin susceptibility inA15 compounds." Physical Review B 35, no. 7 (1987): 3415–24. http://dx.doi.org/10.1103/physrevb.35.3415.
Full textTripathy, Sukanta Kumar, and Deepanjali Misra. "Spin polarization in GaAs LED, the effect of phonon interaction." Optik - International Journal for Light and Electron Optics 124, no. 17 (2013): 2709–12. http://dx.doi.org/10.1016/j.ijleo.2012.08.094.
Full textYARLAGADDA, SUDHAKAR. "MICROSCOPIC APPROACH TO ELECTRON–PHONON INTERACTION PHYSICS IN HALF-DOPED MANGANITES." International Journal of Modern Physics B 15, no. 27 (2001): 3529–37. http://dx.doi.org/10.1142/s0217979201007415.
Full textChen, Zhanghui, and Lin-Wang Wang. "Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms." Science Advances 5, no. 6 (2019): eaau8000. http://dx.doi.org/10.1126/sciadv.aau8000.
Full textAlcalde, A. M., C. L. Romano, and G. E. Marques. "Spin relaxation rates in quantum dots: Role of the phonon modulated spin–orbit interaction." Solid State Communications 148, no. 5-6 (2008): 255–58. http://dx.doi.org/10.1016/j.ssc.2008.08.002.
Full textEgami, T., B. V. Fine, D. Parshall, A. Subedi, and D. J. Singh. "Spin-Lattice Coupling and Superconductivity in Fe Pnictides." Advances in Condensed Matter Physics 2010 (2010): 1–7. http://dx.doi.org/10.1155/2010/164916.
Full textKovachev, St, and J. M. Wesselinowa. "Impact of the spin–phonon interaction on the phonon properties of multiferroic hexagonal RMnO3thin films." Journal of Physics: Condensed Matter 22, no. 25 (2010): 255901. http://dx.doi.org/10.1088/0953-8984/22/25/255901.
Full textKornich, Viktoriia, Christoph Kloeffel, and Daniel Loss. "Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots." Quantum 2 (May 28, 2018): 70. http://dx.doi.org/10.22331/q-2018-05-28-70.
Full textHong, Fang-Yu, Jing-Li Fu, Yan Wu, and Zhi-Yan Zhu. "Electrical control of strong spin-phonon coupling in a carbon nanotube." Quantum Information and Computation 17, no. 1&2 (2017): 117–24. http://dx.doi.org/10.26421/qic17.1-2-7.
Full textMatsuno, Shunichi, Hideki Ushio, Yuji Suwa, and Hiroshi Kamimura. "V. Mechanism of Superconductivity." International Journal of Modern Physics B 11, no. 32 (1997): 3815–31. http://dx.doi.org/10.1142/s0217979297001957.
Full textYAKUT, HAKAN, EMRE TABAR, ALI AKBAR KULIEV, ZEMINE ZENGINERLER, and PINAR KAPLAN. "GROUND STATE MAGNETIC PROPERTIES OF ODD NEUTRON DY ISOTOPES." International Journal of Modern Physics E 22, no. 10 (2013): 1350076. http://dx.doi.org/10.1142/s0218301313500766.
Full textYasuda, Chitoshi, and Satoru Akiyama. "Quantum Phase Transition Induced by Geometrical Changes in Spin–Phonon Interaction." Journal of the Physical Society of Japan 84, no. 1 (2015): 014705. http://dx.doi.org/10.7566/jpsj.84.014705.
Full textTanaka, C. "ELECTRON PHONON INTERACTION VS. SPIN FLUCTUATION EFFECTS IN ITINERANT ELECTRON MAGNETISM." Le Journal de Physique Colloques 49, no. C8 (1988): C8–77—C8–78. http://dx.doi.org/10.1051/jphyscol:1988825.
Full textCottam, M. G., and D. J. Lockwood. "Spin-phonon interaction in transition-metal difluoride antiferromagnets: Theory and experiment." Low Temperature Physics 45, no. 1 (2019): 78–91. http://dx.doi.org/10.1063/1.5082316.
Full textChân, Nguyêñ Ngoc. "The shift of the curie temperature due to spin-phonon interaction." Czechoslovak Journal of Physics 40, no. 3 (1990): 341–44. http://dx.doi.org/10.1007/bf01597759.
Full textWesselinowa, J. M., and A. T. Apostolov. "Spin-phonon interaction effects in pure and ion-doped NiO nanoparticles." physica status solidi (b) 248, no. 3 (2010): 755–59. http://dx.doi.org/10.1002/pssb.201046148.
Full textVaughan, M. P., and J. M. Rorison. "Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots." Semiconductor Science and Technology 33, no. 1 (2017): 014001. http://dx.doi.org/10.1088/1361-6641/aa995d.
Full textAlcalde, A. M., O. O. Diniz Neto, and G. E. Marques. "Spin relaxation due to the phonon modulation of the spin–orbit interaction in quantum dots." Microelectronics Journal 36, no. 3-6 (2005): 241–43. http://dx.doi.org/10.1016/j.mejo.2005.02.014.
Full textZhang, De-Lin, Jie Zhu, Tao Qu, et al. "High-frequency magnetoacoustic resonance through strain-spin coupling in perpendicular magnetic multilayers." Science Advances 6, no. 38 (2020): eabb4607. http://dx.doi.org/10.1126/sciadv.abb4607.
Full text