Academic literature on the topic 'Interactional data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interactional data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interactional data"
Wortham, Stanton, Katherine Mortimer, Kathy Lee, Elaine Allard, and Kimberly Daniel White. "Interviews as interactional data." Language in Society 40, no. 1 (February 2011): 39–50. http://dx.doi.org/10.1017/s0047404510000874.
Full textKádár, Dániel Z. "Identity Formation in Ritual Interaction." International Review of Pragmatics 7, no. 2 (2015): 278–307. http://dx.doi.org/10.1163/18773109-00702006.
Full textReed, Darren J. "Dancing with Data: Introducing a Creative Interactional Metaphor." Sociological Research Online 25, no. 4 (December 26, 2019): 533–48. http://dx.doi.org/10.1177/1360780419892640.
Full textPeltonen, Pauliina. "L2 fluency in spoken interaction: a case study on the use of other-repetitions and collaborative completions." AFinLA-e: Soveltavan kielitieteen tutkimuksia, no. 10 (July 2, 2018): 118–38. http://dx.doi.org/10.30660/afinla.73130.
Full textMurdoch, Jamie, Fiona Poland, and Charlotte Salter. "Analyzing Interactional Contexts in a Data-Sharing Focus Group." Qualitative Health Research 20, no. 5 (February 12, 2010): 582–94. http://dx.doi.org/10.1177/1049732310361612.
Full textSuryati, Nunung. "Indonesian Efl Teachers’ Practice Of Interactional Feedback." KnE Social Sciences 1, no. 3 (April 13, 2017): 489. http://dx.doi.org/10.18502/kss.v1i3.771.
Full textSvahn, Johanna, and Ann-Carita Evaldsson. "‘You could just ignore me’: Situating peer exclusion within the contingencies of girls’ everyday interactional practices." Childhood 18, no. 4 (September 9, 2011): 491–508. http://dx.doi.org/10.1177/0907568211402859.
Full textZiegler, Nicole, and Huy Phung. "Technology-mediated task-based interaction." Technology-mediated feedback and instruction 170, no. 2 (October 8, 2019): 251–76. http://dx.doi.org/10.1075/itl.19014.zie.
Full textMortensen, Kristine Køhler. "Informed consent in the field of language and sexuality." Journal of Language and Sexuality 4, no. 1 (March 30, 2015): 1–29. http://dx.doi.org/10.1075/jls.4.1.01mor.
Full textNavaz, Abdul Majeed Mohamed. "Developing Interaction in ESL Classes: An Investigation of Teacher-Student Interaction of Teacher Trainees in a Sri Lankan University." International Journal of Learning, Teaching and Educational Research 20, no. 2 (February 28, 2021): 174–96. http://dx.doi.org/10.26803/ijlter.20.2.10.
Full textDissertations / Theses on the topic "Interactional data"
Lozano, Prieto David. "Data analysis and visualization of the 360degrees interactional datasets." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-88985.
Full textHannila, H. (Hannu). "Towards data-driven decision-making in product portfolio management:from company-level to product-level analysis." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526224428.
Full textTiivistelmä Tuotteet ja palvelut ovat yrityksille kriittisiä, sillä ne luovat perustan yritysten taloudelliselle menestykselle. Kaksikymmentä prosenttia yrityksen tuotteista edustaa tyypillisesti noin kahdeksaakymmentä prosenttia myyntimääristä. Siitä huolimatta tuoteporfoliopäätöksiin — kuinka strategisesti uudistetaan yrityksen tuotetarjoomaa — liittyy tunteita, lemmikkituotteita ja kuka-huutaa-kovimmin -mentaliteettia faktojen, numeroiden ja kvantitatiivisten analyysien puuttuessa. Kannattavuutta mitataan ja raportoidaan tällä hetkellä yritystasolla, ja yritykset eivät näyttäisi pystyvän mittaamaan tuotetason kannattavuutta johdonmukaisesti. Tämä estää yrityksiä ylläpitämästä ja uudistamasta tuotevalikoimaansa strategisesti tai kaupallisesti tasapainoisella tavalla. Tämän tutkimuksen päätavoite on tarjota dataohjattu (data-driven) tuoteportfoliohallinnan konsepti, joka tunnistaa ja visualisoi reaaliajassa ja faktapohjaisesti, mitkä yrityksen tuotteet ovat samanaikaisesti strategisia ja kannattavia ja mikä on niiden osuus tuoteportfoliossa. Tämä väitöskirja on laadullinen tutkimus, jossa yhdistyy kirjallisuuskatsaus, yrityshaastattelut, havainnot ja yritysten sisäinen dokumentaatio, joiden pohjalta pyritään kohti dataohjautuvaa päätöksentekoa tuoteportfolion hallinnassa. Tämä tutkimus osoittaa, että yrityksen data assettit on yhdistettävä ja hallittava yrityksenlaajuisesti, jotta yrityksen strategisten assettien — DATAN — potentiaali voidaan hyödyntää kokonaisuudessaan. Data on hallittava erillään yrityksen IT-teknologiasta ja sen yläpuolella. Ennen dataa ja teknologiaa on omaksuttava dataohjattu yrityskulttuuri. Dataohjatun tuoteportfolionhallinnan konsepti yhdistää keskeiset liiketoimintaprosessit, liiketoiminnan IT-järjestelmät ja useita konsepteja, kuten tuotteistaminen, tuotteen elinkaaren hallinta ja tuoteportfolion hallinta. Yhteisymmärrys yrityksen tuotteista ja sekä kaupallisen että teknisen tuoterakenteet luominen vastaavasti on ennakkoedellytys dataohjatulle tuoteportfolion hallinnalle, koska ne muodostavat yrityksen liiketoiminnan selkärangan, joka yhdistää kaikki tuotteisiin liittyvät liiketoimintakriittiset tiedot tuotetason kannattavuuden analysoimiseksi. Lisäksi tarvitaan tuotteiden kategorisointi strategisiin, tukeviin ja ei-strategisiin tuotteisiin, koska tuotteen strateginen luonne voi muuttua tuotteen elinkaaren aikana, johtuen esimerkiksi teknologian vanhenemisesta, kilpailijoiden häiritsevistä innovaatioista tai mistä tahansa muusta syystä
Xue, Vincent. "Modeling and designing Bc1-2 family protein interactions using high-throughput interaction data." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120446.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 153-164).
Protein-protein interactions (PPIs) play a major role in cellular function, mediating signal processing and regulating enzymatic activity. Understanding how proteins interact is essential for predicting new binding partners and engineering new functions. Mutational analysis is one way to study the determinants of protein interaction. Traditionally, the biophysical study of protein interactions has been limited by the number of mutants that could be made and analyzed, but advances in high-throughput sequencing have enabled rapid assessment of thousands of variants. The Keating lab has developed an experimental protocol that can rank peptides based on their binding affinity for a designated receptor. This technique, called SORTCERY, takes advantage of cell sorting and deep-sequencing technologies to provide more binding data at a higher resolution than has previously been achievable. New computational methods are needed to process and analyze the high-throughput datasets. In this thesis, I show how experimental data from SORTCERY experiments can be processed, modeled, and used to design novel peptides with select specificity characteristics. I describe the computational pipeline that I developed to curate the data and regression models that I constructed from the data to relate protein sequence to binding. I applied models trained on experimental data sets to study the peptide-binding specificity landscape of the Bc1-xL, Mc1-1, and Bf1-1 anti-apoptotic proteins, and I designed novel peptides that selectively bind tightly to only one of these receptors, or to a pre-specified combination of receptors. My thesis illustrates how data-driven models combined with high-throughput binding assays provide new opportunities for rational design.
by Vincent Xue.
Ph. D.
Popov, Igor. "End-user data-centric interactions over linked data." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/361729/.
Full textCarlsson, Nicole. "Vulnerable data interactions — augmenting agency." Thesis, Malmö universitet, Fakulteten för kultur och samhälle (KS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-23309.
Full textElhageen, Adel Abdelfatah M. "Effect of interaction between parental treatment styles and peer relations in classroom on the feelings of loneliness among deaf children in Egyptian schools /." Berlin : WVB Wissenschaftlicher Verlag, 2005. http://www.wvberlin.de/data/inhalt/elhageen.htm.
Full textRodriguez, Perdomo Carlos Mario. "Designing interactions for data obfuscation in IoT." Thesis, Malmö högskola, Fakulteten för kultur och samhälle (KS), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-22494.
Full textFischer, Manfred M., and Daniel A. Griffith. "Modelling spatial autocorrelation in spatial interaction data." WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/3948/1/SSRN%2Did1102183.pdf.
Full textThomas, Helen. "Enabling scalable online user interaction management through data warehousing of interaction histories / by Helen Thomas." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/29873.
Full textLiu, Chunmei 1970. "Cross-layer protocol interactions in heterogeneous data networks." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/28918.
Full textIncludes bibliographical references (p. 143-148).
(cont.) TCP timeout backoff and MAC layer retransmissions, are studied in detail. The results show that the system performance is a balance of idle slots and collisions at the MAC layer, and a tradeoff between packet loss probability and round trip time at the transport layer. Finally, we consider the optimal scheduling problem with window service constraints. Optimal policies that minimize the average response time of jobs are derived and the results show that both the job lengths and the window sizes are essential to the optimal policy.
Modern data networks are heterogeneous in that they often employ a variety of link technologies, such as wireline, optical, satellite and wireless links. As a result, Internet protocols, such as Transmission Control Protocol (TCP), that were designed for wireline networks, perform poorly when used over heterogeneous networks. This is particularly the case for satellite and wireless networks which are often characterized by high bandwidth-delay product and high link loss probability. This thesis examines the performance of TCP in the context of heterogeneous networks, particularly focusing on interactions between protocols across different layers of the protocol stack. First, we provide an analytical framework to study the interaction between TCP and link layer retransmission protocols (ARQ). The system is modelled as a Markov chain with reward functions, and detailed queueing models are developed for the link layer ARQ. The analysis shows that in most cases implementing ARQ can achieve significant improvement in system throughput. Moreover, by proper choice of protocols parameters, such as the packet size and the number of transmission attempts per packet, significant performance improvement can be obtained. We then investigate the interaction between TCP at the transport layer and ALOHA at the MAC layer. Two equations are derived to express the system performance in terms of various system and protocol parameters, which show that the maximum possible system throughput is 1/e. A sufficient and necessary condition to achieve this throughput is also presented, and the optimal MAC layer transmission probability at which the system achieves its highest throughput is given. Furthermore, the impact of other system and protocol parameters, such as
by Chunmei Liu.
Ph.D.
Books on the topic "Interactional data"
Cao, Longbing, Yifeng Zeng, Andreas L. Symeonidis, Vladimir Gorodetsky, Jörg P. Müller, and Philip S. Yu, eds. Agents and Data Mining Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55192-5.
Full textCao, Longbing, Yifeng Zeng, Bo An, Andreas L. Symeonidis, Vladimir Gorodetsky, Frans Coenen, and Philip S. Yu, eds. Agents and Data Mining Interaction. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20230-3.
Full textCao, Longbing, Vladimir Gorodetsky, Jiming Liu, Gerhard Weiss, and Philip S. Yu, eds. Agents and Data Mining Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03603-3.
Full textCao, Longbing, Yifeng Zeng, Andreas L. Symeonidis, Vladimir I. Gorodetsky, Philip S. Yu, and Munindar P. Singh, eds. Agents and Data Mining Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36288-0.
Full textCao, Longbing, Ana L. C. Bazzan, Vladimir Gorodetsky, Pericles A. Mitkas, Gerhard Weiss, and Philip S. Yu, eds. Agents and Data Mining Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15420-1.
Full textCao, Longbing, Ana L. C. Bazzan, Andreas L. Symeonidis, Vladimir I. Gorodetsky, Gerhard Weiss, and Philip S. Yu, eds. Agents and Data Mining Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27609-5.
Full textCannataro, Mario, and Pietro Hiram Guzzi. Data Management of Protein Interaction Networks. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118103746.
Full text1980-, Guzzi Pietro Hiram, ed. Data management of protein interaction networks. Hoboken, NY: Wiley, 2012.
Find full textOberholzner, Werner. SWADE data guide. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1996.
Find full textMulvihill, C. G. Group interaction support. Dublin: University College Dublin, 1996.
Find full textBook chapters on the topic "Interactional data"
Jamieson, Jack, and Jeffrey Boase. "Listening to Social Rhythms: Exploring Logged Interactional Data Through Sonification." In The SAGE Handbook of Social Media Research Methods, 405–19. 1 Oliver's Yard, 55 City Road London EC1Y 1SP: SAGE Publications Ltd, 2016. http://dx.doi.org/10.4135/9781473983847.n24.
Full textBlache, Philippe, Roxane Bertrand, Gaëlle Ferré, Berthille Pallaud, Laurent Prévot, and Stéphane Rauzy. "The Corpus of Interactional Data: A Large Multimodal Annotated Resource." In Handbook of Linguistic Annotation, 1323–56. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0881-2_51.
Full textMüller, Nicole. "Why Use Interactional Data to Better Understand the Effects of Dementia?" In Learning from the Talk of Persons with Dementia, 47–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43977-4_4.
Full textSchmitz, Andreas, Olga Yanenko, and Marcel Hebing. "Identifying Artificial Actors in E-Dating: A Probabilistic Segmentation Based on Interactional Pattern Analysis." In Challenges at the Interface of Data Analysis, Computer Science, and Optimization, 319–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24466-7_33.
Full textHinneburg, Alexander, and Daniel A. Keim. "Visual Interaction." In Data Visualization, 407–21. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1177-9_28.
Full textPedley, J. B., R. D. Naylor, and S. P. Kirby. "Group Interactions." In Thermochemical Data of Organic Compounds, 52–63. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4099-4_4.
Full textSchmidt, Benedikt, and Eicke Godehardt. "Interaction Data Management." In Knowlege-Based and Intelligent Information and Engineering Systems, 402–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23863-5_41.
Full textBöhmelt, Tobias. "Main Data Source: The International Conflict Management Data." In International Mediation Interaction, 23–30. Wiesbaden: VS Verlag für Sozialwissenschaften, 2011. http://dx.doi.org/10.1007/978-3-531-92812-8_2.
Full textAigner, Wolfgang, Silvia Miksch, Heidrun Schumann, and Christian Tominski. "Interaction Support." In Visualization of Time-Oriented Data, 105–26. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-079-3_5.
Full textCleophas, Ton J., and Aeilko H. Zwinderman. "Interaction." In Clinical Data Analysis on a Pocket Calculator, 139–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27104-0_25.
Full textConference papers on the topic "Interactional data"
Razin, Yosef, and Karen Feigh. "Toward Interactional Trust for Humans and Automation: Extending Interdependence." In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019. http://dx.doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00247.
Full textKriz, Sarah, Toni D. Ferro, Pallavi Damera, and John R. Porter. "Fictional robots as a data source in HRI research: Exploring the link between science fiction and interactional expectations." In 2010 RO-MAN: The 19th IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 2010. http://dx.doi.org/10.1109/roman.2010.5598620.
Full textZhang, Xiaowang, Qiang Gao, and Zhiyong Feng. "InteractionNN: A Neural Network for Learning Hidden Features in Sparse Prediction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/602.
Full textFlesch, Benjamin Johannes. "Social Interaction Model." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622346.
Full textBalma, Jacob, Aaron D. Vose, Yuri K. Peterson, Amar G. Chittiboyina, Pankaj Pandey, Charles R. Yates, Ikhlas A. Khan, and Sreenivas R. Sukumar. "Deep Learning Predicts Protein-Ligand Interactions." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9377868.
Full textBuck, Lauren E., and Bobby Bodenheimer. "Privacy and Personal Space: Addressing Interactions and Interaction Data as a Privacy Concern." In 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, 2021. http://dx.doi.org/10.1109/vrw52623.2021.00086.
Full textKim, Minkyu, Suan Lee, and Jinho Kim. "Combining Multiple Implicit-Explicit Interactions for Regression Analysis." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378402.
Full textStrey, Mateus Rambo, Roberto Pereira, and Luciana C. de Castro Salgado. "Human Data-Interaction." In IHC 2018: 17th Brazilian Symposium on Human Factors in Computing Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3274192.3274219.
Full textWang, Chenxiao, Jason Arenson, Florian Helff, Le Gruenwald, and Laurent d'Orazio. "Improving user interaction in mobile-cloud database query processing." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258208.
Full textPeuhkuri, Markus. "Toolbox to analyze computer-network interaction." In Voice, Video, and Data Communications, edited by Wai Sum Lai and Hisashi Kobayashi. SPIE, 1997. http://dx.doi.org/10.1117/12.290445.
Full textReports on the topic "Interactional data"
Schutt, Timothy, and Manoj Shukla. Predicting the impact of aqueous ions on fate and transport of munition compounds. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41481.
Full textLiu, Huan, Xufei Wang, Lei Tang, Sai Moturu, Nitin Agarwal, John Salerno, and Geoff Barbier. Modeling Group Interactions via Open Data Sources. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada567932.
Full textTerrill, Eric J. CBLAST Data Analysis: Air-Sea Interaction Floats. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada495437.
Full textBriscoe, William John, Igor I. Strakovsky, and Ronald L. Workman. A Data Analysis Center for Electromagnetic and Hadronic Interaction. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1213477.
Full textSmith, L. The Use of Man-Machine Interaction in Data-Fitting Problems. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1453868.
Full textBrand, A. G., N. M. Komerath, and H. M. McMahon. Wind Tunnel Data from a Rotor Wake/Airframe Interaction Study. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada171333.
Full textSchildknecht, Thomas, and Monika Hager. Quantifying Space Environment Interactions with Debris Objects using Observation Data Fusion Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada611570.
Full textThomas, E. W. Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces. Office of Scientific and Technical Information (OSTI), February 1985. http://dx.doi.org/10.2172/5959343.
Full textMoore, James A. Interaction of Typhoon and Ocean Project (ITOP) Data Management and Operations Support. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590521.
Full textApitz, S. E., B. P. Ayers, and V. J. Kirtay. Use of Data on Contaminant/Sediment Interactions to Streamline Sediment Assessment and Management. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada432474.
Full text