Contents
Academic literature on the topic 'Interactions vent-vagues'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interactions vent-vagues.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Interactions vent-vagues"
Grare, Laurent. "Etude des interactions Océan-Atmosphère à proximité immédiate de l'interface : application aux vagues de vent et aux vagues extrêmes." Aix-Marseille 2, 2009. http://theses.univ-amu.fr.lama.univ-amu.fr/2009AIX22054.pdf.
Full textDuring the mecanical energy transfer from the wind to the waves, one part of the energy contributes to amplifying the waves through the form drag, whilst the other part contributes to the drift current through the viscous stress. An experimental study was undertaken in order to determine how this energy divides itself between the two stresses for different wave and wind conditions. The form drag is measured by the static pressure as close as possible to the surface whereas the viscous stress is measured by the wind speed in the viscous sub-layer. A pressure probe hanged on an ’wave follower’device allows us to give a detailed description of the pressure fields within the turbulent layer as close as possible to the surface. An device ’allows us to determine the shear stress at the surface. We show that the viscous stress’s contribution to the total stress is a decreasing function of the wind and of the slope which is not constant along the wave’s profile. The study of pressure fields also put in defect the classic measurement methods of the form drag which consist in extrapolating of the Pressure-Slope. A comparative study of the airsea momentum using the Inertial Dissipation method and the Eddy Correlation Method shows that results diverge when approaching the interface. We show that supplementary terms appear in the turbulent kinetic energy conservation equation written in curvilinear coordinates. An experimental study of the interactions between the wind and freak wave shows that increasing of the life expectancy of those waves in the presence of wind is partly due to the air-flow separation
Grare, Laurent. "Étude des interactions océan-atmosphère à proximité immédiate de l'interface: application aux vagues de vent et aux vagues extrêmes." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2009. http://tel.archives-ouvertes.fr/tel-00454511.
Full textGagnaire-Renou, Elodie. "Amélioration de la modélisation spectrale des états de mer par un calcul quasi-exact des interactions non-linéaires vague-vague." Phd thesis, Université du Sud Toulon Var, 2009. http://tel.archives-ouvertes.fr/tel-00595353.
Full textAyet, Alex. "Flux de quantité de mouvement à l'interface air-mer : approche théorique du couplage entre turbulence et vagues de vent On the Impact of Long Wind-Waves on Near-Surface Turbulence and Momentum Fluxes, in Boundary-Layer Meteorology volume 174, March 2020 Scalewise return to isotropy in stratified boundary layer flows, in JGR Atmospheres 125 (16), August 2020 Scaling laws for the length scale of energy‐containing eddies in a sheared and thermally stratified atmospheric surface layer, in Geophysical Research Letters 47(23), December 2020." Thesis, Brest, 2020. http://www.theses.fr/2020BRES0038.
Full textDespite numerous works, the causal link between wind and waves is still a controversial subject. This is due, among others, to the multi-scale nature of a realistic ocean surface and to wave breaking, which changes its topology. In this thesis, such problems are studied from a theoretical perspective, using a phenomenological model linking the spectral and averaged properties of wall-bounded turbulence through the geometry attached eddies.The first part of the thesis revisits this phenomenological model by questioning its underlying assumptions and, in particular, reveals inconsistencies in the models used for the energy redistribution between turbulence components (the Rotta model). The phenomenological model is then used to study the coupling between long wind-waves (of order 10m) and turbulence. Results indicate that the deformation of attached eddies, induced by this interaction, could explain some of the variability in momentum fluxes for a given mean wind. Finally, the study of the coupling between turbulence and short breaking waves is approached by defining a roughness sublayer, in which the properties of the attached eddies depend solely on the speed of the dominant breaking fronts for a given wind. These two studies from the basis of a new paradigm to study the multi-scale coupling between the turbulent and wave spectra. This would allow accounting for the influence of environmental parameters on momentum and heat fluxes, and opens new paths both from a theoretical perspective and for the analysis of experimental data
Paquier, Anne-Éléonore. "Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM3064/document.
Full textBerre lagoon was occupied by extensive meadows at the turn of the 20th century which regressed down under the impact of urban and industrial pollution and inflow of the EDF canal. Even though freshwater inputs and pollutions were drastically reduced respectively in the 1980s and 1990s, meadows have not significantly gained ground. This thesis aims at analysing the interactions between seagrass meadows of Berre lagoon, hydrodynamics and sedimentary processes, based on the postulate that these mechanisms are important in the maintenance of the meadows in their present dispersed form. In the lagoon, winds constitute the dominant influence on hydrodynamics in the lagoon by generating wind waves and currents. Wave attenuation is linked to wave height, which is, in turn, dependent on wind intensity and fetch length and modified by the bay morphology. Wave attenuation is also modulated by meadow biometry, and by water levels and currents.Whereas currents are strong and strongly influenced by wind and wind waves above the meadow, a transition canopy-water layer dissipates waves and currents. In the canopy, currents are thus attenuated.The meadow is not just a passive element in the overall sediment dynamics since it reduces energy and thus modifies substrate changes within and in the back of the meadow, thus protecting the shoreline. However, it is the recurrence of strong wind that seems to drive sedimentary changes. The strong interactions between the meadow and the hydrodynamic and sedimentary processes could limit the extension of the meadow in areas more exposed to waves
Perignon, Yves. "Modélisation déterministe des états de mer - Application à la rétrodiffusion d'ondes radar." Phd thesis, Ecole centrale de nantes - ECN, 2011. http://tel.archives-ouvertes.fr/tel-00624645.
Full textCambra, Rémi. "Etude des flux turbulents à l'interface air-mer à partir de données de la plateforme OCARINA." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV024/document.
Full textExchanges of heat and momentum at the air-sea interface play a major role in the formation and the dynamics of water and air masses. In spite of decades of research, we still need to improve our knowledge of these exchanges, and more specifically our knowledge of turbulent fluxes, which are key variables in meteorological and climate models. In these models, sub-grid turbulent processes, thus turbulent fluxes also have to be modeled, which is mostly done with the Monin-Obukhov (1954, MOS hereafter) similarity theory. However, on the one hand, the use of a model implies that coefficients have to be adjusted. On the other hand, the model itself may require improvements. Unfortunately, obtaining flux estimates that have a good accuracy is a challenging effort, because of the intrusive effect of the platform, the limited accuracy the instruments, and because the instruments have their own sampling volume.Our study focuses on the estimation of turbulent fluxes at sea from measurements made with the new OCARINA platform (autonomous trimaran) during two campaigns : STRASSE 2012 and AMOP 2014. We analyze the characteristics of turbulence in the surface boundary layer, we estimate the turbulent fluxes by different methods, and compare the values of fluxes depending on environmental conditions, taking into account the sea state
Cambra, Rémi. "Etude des flux turbulents à l'interface air-mer à partir de données de la plateforme OCARINA." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLV024.
Full textExchanges of heat and momentum at the air-sea interface play a major role in the formation and the dynamics of water and air masses. In spite of decades of research, we still need to improve our knowledge of these exchanges, and more specifically our knowledge of turbulent fluxes, which are key variables in meteorological and climate models. In these models, sub-grid turbulent processes, thus turbulent fluxes also have to be modeled, which is mostly done with the Monin-Obukhov (1954, MOS hereafter) similarity theory. However, on the one hand, the use of a model implies that coefficients have to be adjusted. On the other hand, the model itself may require improvements. Unfortunately, obtaining flux estimates that have a good accuracy is a challenging effort, because of the intrusive effect of the platform, the limited accuracy the instruments, and because the instruments have their own sampling volume.Our study focuses on the estimation of turbulent fluxes at sea from measurements made with the new OCARINA platform (autonomous trimaran) during two campaigns : STRASSE 2012 and AMOP 2014. We analyze the characteristics of turbulence in the surface boundary layer, we estimate the turbulent fluxes by different methods, and compare the values of fluxes depending on environmental conditions, taking into account the sea state
Paskin, Liad. "On the interaction of fast traveling Ocean Waves and the Atmospheric Boundary Layer : A Mechanistic Approach combining Field Measurements and High-fidelity Simulations." Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0012.
Full textIn coastal areas, the wind energy industry migrates to the offshore environment, where huge spaces are still available in stronger and better behaved wind conditions. The offshore environment imposes new challenges to a well established wind energy industry. It is imperative to accurately predict and describe the offshore wind resource in order to design cost efficient solutions. The concerned flow is characterized by a turbulent Atmospheric Boundary Layer (ABL) where the ocean’s dynamics significantly alter the atmospheric flow through higher heat capacity and complex wind-wave interactions important in fairly common situations.So this Thesis reviews and extends the current knowledge regarding Wind-Wave interactions in the lower part of the Marine ABL (MABL), where they are possibly significant in the characterization of the wind resource. The MABL is investigated through physical and numerical experiments, to reveal the role of Wave Induced (WI) motions transferred from the sea into the atmosphere. Thanks to the use of complementary physical and numerical experiments, new insights on the wind-wave interaction processes are obtained
Pineau-Guillou, Lucia. "Interaction Océan-Atmosphère : amélioration de la tension de vent en modélisation physique côtière." Thesis, Brest, 2018. http://www.theses.fr/2018BRES0064/document.
Full textStorm surges may be underestimated in hydrodynamic models, as well as large wave heights in wave models. This could come from an underestimation of strong winds in atmospheric models and/or an inappropriate wind stress formulation. The objectives of the present work are (1) to estimate how strong are the biases for high winds in atmospheric models (2) to develop a new drag parameterization that could reduce this bias (3) to investigate the impact of the waves on the wind stress. The method consists of studying the response of the atmosphere and the ocean to the wind stress.In a first part, we use the coupled wave-atmosphere model from ECMWF. We show that strong winds may be underestimated, as much as -7 m/s at 30 m/s.Significant differences also exist between observations, with buoys and ASCAT-KNMI generally showing lower wind speeds than the platforms and other remote-sensing data used in this study(AMSR2, ASCAT-RSS, WindSat, SMOS and JASON-2).The newly empirically adjusted Charnock parameterization leads to higher winds compared to the default ECMWF parameterization. In a second part, we use the global ocean model TUGO fromLEGOS forced with ECMWF coupled wave-atmopshere model. We show that a wave-dependent rather than wind-dependent stress formulation is more appropriate, when the sea state is young and the sea rougher. It yields to simulated surges closer to observations (i.e. tide gauges and JASON-2 altimeter tracks). The wave impact on the surges is significant, and may reach 20 cm