Academic literature on the topic 'Interactive proofs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interactive proofs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interactive proofs"
Bellare, Mihir, Oded Goldreich, and Shafi Goldwasser. "Randomness in interactive proofs." Computational Complexity 3, no. 4 (December 1993): 319–54. http://dx.doi.org/10.1007/bf01275487.
Full textAyala-Rincón, Mauricio, and Thaynara Arielly de Lima. "Teaching Interactive Proofs to Mathematicians." Electronic Proceedings in Theoretical Computer Science 328 (October 30, 2020): 1–17. http://dx.doi.org/10.4204/eptcs.328.1.
Full textBoyar, Joan, Ivan Damgård, and René Peralta. "Short Non-Interactive Cryptographic Proofs." Journal of Cryptology 13, no. 4 (August 10, 2000): 449–72. http://dx.doi.org/10.1007/s001450010011.
Full textGur, Tom, and Ron D. Rothblum. "Non-interactive proofs of proximity." computational complexity 27, no. 1 (June 3, 2016): 99–207. http://dx.doi.org/10.1007/s00037-016-0136-9.
Full textCormode, Graham, Justin Thaler, and Ke Yi. "Verifying computations with streaming interactive proofs." Proceedings of the VLDB Endowment 5, no. 1 (September 2011): 25–36. http://dx.doi.org/10.14778/2047485.2047488.
Full textNishimura, Harumichi, and Tomoyuki Yamakami. "Interactive proofs with quantum finite automata." Theoretical Computer Science 568 (February 2015): 1–18. http://dx.doi.org/10.1016/j.tcs.2014.11.030.
Full textSTRECKER, MARTIN. "Interactive and automated proofs for graph transformations." Mathematical Structures in Computer Science 28, no. 8 (July 27, 2018): 1333–62. http://dx.doi.org/10.1017/s096012951800021x.
Full textBen-Or, Michael, Avinatan Hassidim, and Haran Pilpel. "Quantum Multiprover Interactive Proofs with Communicating Provers." SIAM Journal on Computing 43, no. 3 (January 2014): 987–1011. http://dx.doi.org/10.1137/090777724.
Full textBabai, László. "Bounded Round Interactive Proofs in Finite Groups." SIAM Journal on Discrete Mathematics 5, no. 1 (February 1992): 88–111. http://dx.doi.org/10.1137/0405008.
Full textGalil, Zvi, Stuart Haber, and Moti Yung. "Minimum-Knowledge Interactive Proofs for Decision Problems." SIAM Journal on Computing 18, no. 4 (August 1989): 711–39. http://dx.doi.org/10.1137/0218049.
Full textDissertations / Theses on the topic "Interactive proofs"
González, Ulloa Alonso Emilio. "Efficient non-interactive zero-knowledge Proofs." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/144465.
Full textNon-Interactive Zero-Knowledge (NIZK) proofs, are proofs that yield nothing beyond their validity. As opposed to the interactive variant, NIZK proofs consist of only one message and are more suited for high-latency scenarios and for building inherently non- interactive schemes, like signatures or encryption. With the advent of pairing-based cryptography many cryptosystems have been built using bilinear groups, that is, three abelian groups G1,G2,GT oforderqtogetherwithabilinear function e : G1 × G2 → GT . Statements related to pairing-based cryptographic schemes are naturally expressed as the satisfiability of equations over these groups and Zq. The Groth-Sahai proof system, introduced by Groth and Sahai at Eurocrypt 2008, provides NIZK proofs for the satisfiability of equations over bilinear groups and over the integers modulo a prime q. Although Groth-Sahai proofs are quite efficient, they easily get expensive unless the statement is very simple. Specifically, proving satisfiability of m equations in n variables requires sending as commitments to the solutions Θ(n) elements of a bilinear group, and a proof that they satisfy the equations, which we simply call the proof, requiring additional Θ(m) group elements. In this thesis we study how to construct aggregated proofs i.e. proofs of size independent of the number of equations for different types of equations and how to use them to build more efficient cryptographic schemes. We show that linear equations admit aggregated proofs of size Θ(1). We then study the case of quadratic integer equations, more concretely the equation b(b − 1) = 0 which is the most useful type of quadratic integer equation, and construct an aggregated proof of size Θ(1). We use these results to build more efficient threshold Groth-Sahai proofs and more efficient ring signatures. We also study a natural generalization of quadratic equations which we call set-membership proofs i.e. show that a variable belongs to some set. We first construct an aggregated proof of size Θ(t), where t is the set size, and of size Θ(logt) if the set is of the form [0,t − 1] ⊂ Zq. Then, we further improve the size of our set-membership proofs and construct aggregated proofs of size Θ(log t). We note that some cryptographic schemes can be naturally constructed as set-membership proofs, specifically we study the case of proofs of correctness of a shuffle and range proofs. Starting from set-membership proofs as a common building block, we build the shortest proofs for both proof systems.
Este trabajo ha sido parcialmente financiado por CONICYT, CONICYT-PCHA/Doctorado Nacional/2013-21130937
Thaler, Justin R. "Practical Verified Computation with Streaming Interactive Proofs." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11086.
Full textEngineering and Applied Sciences
Saeednia, Shahrokh. "Zero Useful Knowledge Interactive Proofs of Similarity." Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212539.
Full textMilner, Kevin. "Quantum interactive proofs and the complexity of entanglement detection." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121517.
Full textCe mémoire met en évidence un lien formel entre les problèmes physiques de détection d'intrication et les classes de complexité de l'informatique théorique. Plus particulièrement, nous établissons une correspondance entre la plupart des classes de complexité naturelles issues de preuves interactives quantiques (incluant BQP, QMA, QMA(2), QSZK, et QIP), et une intrication ou un problème de détection de corrélation qui est complet pour cette classe. En ce sens, nous pouvons dire que l'intrication, ou le problème de détection de corrélation, capture la puissance expressive de chaque classe de complexité de preuve interactive quantique et que le contraste entre de tels problèmes donne une idée sur les différences entre les classes de preuves interactives quantiques. Il est démontré que la difficulté de la détection d'intrication varie considérablement du fait que la mesure de distance utilisée soit la distance de trace ou LOCC unidirectionnel. Nous fournissons également l'analyse d'un problème similaire, et montrons que celui-ci est décidable par un système de preuve interactive quantique (de deux messages) tout en étant NP-dur ainsi que QSZK-dur, le premier exemple non trivial d'un tel problème.
Pindado, Zaira. "Pairing-based non-interactive zero-knowledge arguments and applications." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/671270.
Full textLes corbes el·líptiques amb una aplicació bilineal, o pairing, tenen una estructura algebraica molt rica que ha sigut fonamental per desenvolupar proves de zero coneixement no interactives (NIZK). En la banda teòrica, explorem quant eficients poden ser les proves NIZK sota hipòtesis de complexitat dèbils. Més concretament, reduïm el cost de les proves de satisfacció per equacions quadràtiques, definim un nou esquema de compromís que és compatible amb altres proves NIZK basades en pairings i construïm una prova que resulta en una nova signatura de coneixement amb una comunicació sublineal en la mida del circuit sota hipòtesis estàndards. A més, estudiem com es redueix el cost de verificació en una de les proves NIZK més desenvolupades a la pràctica.
Titiu, Radu. "New Encryption Schemes and Pseudo-Random Functions with Advanced Properties from Standard Assumptions." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN050.
Full textIn this thesis, we study the security of advanced cryptographic primitives against adversaries that behave closer to real-life scenarios. Namely, they can adaptively update their strategy during the attack, based on previously obtained information, possible from external sources like corrupted users. We construct Distributed Pseudorandom Functions that still output random-looking values, even when the adversary can adaptively corrupt some servers. Such a system assumes that the secret key is shared among multiple servers that have to combine their partial evaluations in order to obtain a pseudorandom value. We also prove security against adaptive corruptions, in the stronger simulation-based security model, for Inner Product Functional Encryption. Such a public-key scheme encrypts vectors x and can issue multiple secret keys associated to key vectors y. The decryptor learns the partial information but nothing else. This primitive can compute statistics (e.g., weighted sums or means) on a database, while keeping each individual input private. We also construct a labeled variant, wherein each database entry is encrypted by a different client, called Multi-Client Functional Encryption.We finally provide a new construction of Non-Interactive Zero-Knowledge proof, which convinces a verifier of the validity of some NP statement without leaking anything else. In addition, an adversary obtaining many simulated proofs for possibly false statements cannot produce a valid proof of its own for a false statement. This primitive is used as a building-block for public-key encryption schemes with advanced security properties
Hegde, Suprabha Shreepad. "Analysis of Non-Interactive Zero Knowledge Proof." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535702372270471.
Full textCheung, Kit-yuk Josephine, and 張潔玉. "Students' interaction in doing proofs: an exploratory study." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B3196249X.
Full textCheung, Kit-yuk Josephine. "Students' interaction in doing proofs an exploratory study /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23501030.
Full textRitchie, Brian. "The design and implementation of an interactive proof editor." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/6607.
Full textBooks on the topic "Interactive proofs"
Baird, Henry S., and Daniel P. Lopresti, eds. Human Interactive Proofs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b136509.
Full textS, Baird Henry, and Lopresti Daniel Philip, eds. Human interactive proofs: Second international workshop, HIP 2005, Bethlehem, PA, USA, May 19-20, 2005 : proceedings. Berlin: Springer, 2005.
Find full textRitchie, Brian. The interactive proof editor: An experiment in interactive theorem. Edinburgh: University of Edinburgh, Laboratory for Foundations of Computer Science, 1988.
Find full textPaulson, Lawrence C. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge: Cambridge University Press, 1987.
Find full textPaulson, Lawrence C. Logic and computation: Interactive proof with Cambridge LCF. Cambridge: Cambridge University Press, 1987.
Find full textKievit, Johan de. Handelen en ruimte: Interactie tussen overheidsmaatregelen en maatschappelijk proces. Amsterdam: Thesis Publishers, 1993.
Find full textPlotkin, G., Colin P. Stirling, and Mads Tofte. Proof, language, and interaction: Essays in honour of Robin Milner. Cambridge, Mass: MIT Press, 2000.
Find full textDrug-DNA interaction protocols. 2nd ed. New York, N.Y: Humana Press, Springer Science+Business Media, 2010.
Find full textGasperini, Chiara, and Tommaso Rafanelli. SIMdisaster. Florence: Firenze University Press, 2007. http://dx.doi.org/10.36253/978-88-8453-616-7.
Full textBook chapters on the topic "Interactive proofs"
Ben-Sasson, Eli, Alessandro Chiesa, and Nicholas Spooner. "Interactive Oracle Proofs." In Theory of Cryptography, 31–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53644-5_2.
Full textChellapilla, Kumar, Kevin Larson, Patrice Y. Simard, and Mary Czerwinski. "Building Segmentation Based Human-Friendly Human Interaction Proofs (HIPs)." In Human Interactive Proofs, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_1.
Full textBaird, Henry S., Michael A. Moll, and Sui-Yu Wang. "A Highly Legible CAPTCHA That Resists Segmentation Attacks." In Human Interactive Proofs, 27–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_2.
Full textRusu, Amalia, and Venu Govindaraju. "Visual CAPTCHA with Handwritten Image Analysis." In Human Interactive Proofs, 42–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_3.
Full textRui, Yong, Zicheng Liu, Shannon Kallin, Gavin Janke, and Cem Paya. "Characters or Faces: A User Study on Ease of Use for HIPs." In Human Interactive Proofs, 53–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_4.
Full textChew, Monica, and J. D. Tygar. "Collaborative Filtering CAPTCHAs." In Human Interactive Proofs, 66–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_5.
Full textConverse, Tim. "CAPTCHA Generation as a Web Service." In Human Interactive Proofs, 82–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_6.
Full textLopresti, Daniel. "Leveraging the CAPTCHA Problem." In Human Interactive Proofs, 97–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_7.
Full textBentley, Jon, and Colin Mallows. "How Much Assurance Does a PIN Provide?" In Human Interactive Proofs, 111–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_8.
Full textDhamija, Rachna, and J. D. Tygar. "Phish and HIPs: Human Interactive Proofs to Detect Phishing Attacks." In Human Interactive Proofs, 127–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427896_9.
Full textConference papers on the topic "Interactive proofs"
Kol, Gillat, Rotem Oshman, and Raghuvansh R. Saxena. "Interactive Distributed Proofs." In PODC '18: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3212734.3212771.
Full textRothblum, Guy N., Salil Vadhan, and Avi Wigderson. "Interactive proofs of proximity." In the 45th annual ACM symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2488608.2488709.
Full textGur, Tom, and Ron D. Rothblum. "Non-Interactive Proofs of Proximity." In ITCS'15: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2688073.2688079.
Full text"ADDITIVE PROOFS OF KNOWLEDGE - A New Notion for Non-Interactive Proofs." In International Conference on Security and Cryptography. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002117102390244.
Full textCormode, Graham, Michael Mitzenmacher, and Justin Thaler. "Practical verified computation with streaming interactive proofs." In the 3rd Innovations in Theoretical Computer Science Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2090236.2090245.
Full textIto, Tsuyoshi, Hirotada Kobayashi, and John Watrous. "Quantum interactive proofs with weak error bounds." In the 3rd Innovations in Theoretical Computer Science Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2090236.2090259.
Full textIda, T. "Interactive vs. automated proofs in computational origami." In 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012). IEEE, 2012. http://dx.doi.org/10.1109/synasc.2012.77.
Full textReingold, Omer, Guy N. Rothblum, and Ron D. Rothblum. "Constant-round interactive proofs for delegating computation." In STOC '16: Symposium on Theory of Computing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897518.2897652.
Full textJi, Zhengfeng. "Compression of quantum multi-prover interactive proofs." In STOC '17: Symposium on Theory of Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3055399.3055441.
Full textCzajka, Łukasz. "Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions." In CPP 2016: Certified Proofs and Programs. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2854065.2854069.
Full textReports on the topic "Interactive proofs"
Beigi, Salman, Peter Shor, and John Watrousw. Quantum Interactive Proofs with Short Messages. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada585814.
Full textFarmer, W. M., J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathematical Proof System. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada243162.
Full textHao, F., ed. Schnorr Non-interactive Zero-Knowledge Proof. RFC Editor, September 2017. http://dx.doi.org/10.17487/rfc8235.
Full textChan, A. A., Liu Chen, and R. B. White. Nonlinear interaction of energetic ring current protons with magnetospheric hydromagnetic waves. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5581494.
Full textOsgood, Richard M., and Jr. The Interaction of Short Ultraviolet-Laser Pulses with Surfaces: Laser Probes of Nanoscale Surface. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada391129.
Full textCampoli, Michael R. CTL-Tumor Cell Interaction: The Generation of Molecular Probes of Monitoring the HLA-A*0201-HER-2/neu Peptide Complex. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada432429.
Full textKo, Eric C. CTL - Tumor Cell Interaction: The Generation of Molecular Probes Capable of Monitoring the HLA-A*0201-HER-2/neu Peptide Complex. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada454867.
Full textKo, Eric C. CTL-Tumor Cell Interaction: The Generation of Molecular Probes Capable of Monitoring the HLA-A*0201-HER-2/neu Peptide Complex. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada470245.
Full textAccessing good communication – Deaf children in a mental health assessment. ACAMH, May 2020. http://dx.doi.org/10.13056/acamh.11882.
Full text