Academic literature on the topic 'Interactive toxicity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interactive toxicity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interactive toxicity"
Venturini, Loretta, and Sheldon B. Sparber. "Salicylate and cocaine: interactive toxicity during chicken mid-embryogenesis." Free Radical Biology and Medicine 30, no. 2 (January 2001): 198–207. http://dx.doi.org/10.1016/s0891-5849(00)00455-x.
Full textKalichman, Seth Charles, Harold Katner, Marnie Hill, Moira O’Connor Kalichman, and Dominica Hernandez. "Alcohol-Related Intentional Antiretroviral Nonadherence among People Living with HIV: Test of an Interactive Toxicity Beliefs Process Model." Journal of the International Association of Providers of AIDS Care (JIAPAC) 18 (January 1, 2019): 232595821982661. http://dx.doi.org/10.1177/2325958219826612.
Full textSun, Hong-Jie, Bala Rathinasabapathi, Bing Wu, Jun Luo, Li-Ping Pu, and Lena Q. Ma. "Arsenic and selenium toxicity and their interactive effects in humans." Environment International 69 (August 2014): 148–58. http://dx.doi.org/10.1016/j.envint.2014.04.019.
Full textKacham, R., S. Karanth, P. Baireddy, J. Liu, and C. Pope. "Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity." Toxicology and Applied Pharmacology 210, no. 1-2 (January 2006): 142–49. http://dx.doi.org/10.1016/j.taap.2005.09.014.
Full textIanevski, Aleksandr, Sanna Timonen, Alexander Kononov, Tero Aittokallio, and Anil K. Giri. "SynToxProfiler: An interactive analysis of drug combination synergy, toxicity and efficacy." PLOS Computational Biology 16, no. 2 (February 3, 2020): e1007604. http://dx.doi.org/10.1371/journal.pcbi.1007604.
Full textDryden, Christina L., Andrew S. Gordon, and John R. Donat. "Interactive regulation of dissolved copper toxicity by an estuarine microbial community." Limnology and Oceanography 49, no. 4 (July 2004): 1115–22. http://dx.doi.org/10.4319/lo.2004.49.4.1115.
Full textNelson, B. K., David L. Conover, Peter B. Shaw, Dwight M. Werren, Richard M. Edwards, and Alan M. Hoberman. "Interactive developmental toxicity of radiofrequency radiation and 2-methoxyethanol in rats." Teratology 50, no. 4 (October 1994): 275–93. http://dx.doi.org/10.1002/tera.1420500403.
Full textElyamine, Ali, Javaria Afzal, Muhammad Rana, Muhammad Imran, Miaomiao Cai, and Chengxiao Hu. "Phenanthrene Mitigates Cadmium Toxicity in Earthworms Eisenia fetida (Epigeic Specie) and Aporrectodea caliginosa (Endogeic Specie) in Soil." International Journal of Environmental Research and Public Health 15, no. 11 (October 27, 2018): 2384. http://dx.doi.org/10.3390/ijerph15112384.
Full textKungolos, A., P. Samaras, A. M. Kipopoulou, A. Zoumboulis, and G. P. Sakellaropoulos. "Interactive toxic effects of agrochemicals on aquatic organisms." Water Science and Technology 40, no. 1 (July 1, 1999): 357–64. http://dx.doi.org/10.2166/wst.1999.0067.
Full textAhsanullah, M., MC Mobley, and P. Rankin. "Individual and combined effects of zinc, cadmium and copper on the marine amphipod Allorchestes compressa." Marine and Freshwater Research 39, no. 1 (1988): 33. http://dx.doi.org/10.1071/mf9880033.
Full textDissertations / Theses on the topic "Interactive toxicity"
Lyle, Zoe Jean. "The interactive toxicity of benzo(a)pyrene and ultraviolet radiation : an in vitro investigation." Thesis, University of Plymouth, 2008. http://hdl.handle.net/10026.1/2203.
Full textBetancourt-Lozano, Miguel. "Interactive toxicity of a triazole-derivative fungicide and an organophosphate pesticide in the marine shrimp Litopenaeus vannamei (Boone, 1931)." Thesis, University of Stirling, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365004.
Full textVevers, William F. "Deoxynivalenol : toxicological profile and potential for reducing cereal grain contamination using bacterial additives in fermented animal feed." Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/4305.
Full textHowarth, Julie Anne. "Aspects of the interaction between cadmium and the acute inflammatory response." Thesis, University of Surrey, 1988. http://epubs.surrey.ac.uk/847535/.
Full textPerdrizet, Isabelle. "Toxicité du cisplatine." Paris 5, 1988. http://www.theses.fr/1988PA05P113.
Full textSantos, Bárbara Rosa da Fonseca. "Toxicity interaction of cooper and salinity on Perez frog life stages." Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7519.
Full textPopulations of amphibians are declining worldwide. Among the major causes for such decline are chemical contamination and climate changes (e.g. increase in temperature, salinization of coastal freshwater ecosystems). Actually, the group of amphibians may be very sensitive to these stressors as they possess a thin and permeable skin with no physical protection that allows cutaneous respiration but also the diffusion of chemical agents present in the environment. Furthermore, their biphasic life cycle exposes amphibains both to aquatic, terrestrial and atmospheric contamination, potentiating the period of exposure. Consequently, it is necessary to understand the effects that chemical contamination may pose to this group of organisms and how other factors may influence their sensitivity to chemical stress. Accordingly, the present work intended at evaluating how life stage and the combination with other stressors may influence the toxicity of copper to the Perez´s frog Pelophylax perezi (Seoane). To attain this main goal, two specific objectives were delineated: (i) to compare the sensitivity of different life stages, embryos versus tadpoles, to copper (Experimental design 1), and (ii) to evaluate the influence of increased salinity (an indirect effect of climate changes in coastal freshwater lagoons) on the toxicity of copper to embryos and tadpoles of P. perezi (Experimental design 2). For this, eggs at Gosner stage 10-11 and tadpoles at Gosner stage 25 were used to carry out 96h exposure assays. For the first experiment, the two life stages were exposed to a gradient of copper plus a control (FETAX). In the second experiment, embryos and tadpoles were exposed to combinations of copper and NaCl (to simulate an increased salinity) in a complete bifactorial experimental design. In the two experiments the following endpoints were monitored: (i) for embryos, mortality was registered every 24h and at the end of the assay the final body length and malformations rate of surviving larvae were assessed; (ii) for tadpoles mortality and swimming behavior were monitored every 24h. Additionally, at the end of the experimental desing 2 the enzymatic activity, of surviving larvae/tadpoles, was quantified for catalase (CAT), cholinesterase (ChE), glutathione S-transferase (GST) and lactate dehydrogenase (LDH). The obtained results showed that embryos were less sensitive to copper than tadpoles (aproximately 50% of mortality at 1.6 mg/L Cu and LC50=0.93 mg/L Cu, respectively). Furthermore, it was observed that NaCl did not influence the lethal toxicity of copper to tadpoles, but, it significantly reduced the copper toxicity to embryos. Regarding enzymatic responses, a clear and consistent response was not observed for the tested treatments. However, for some copper concentration, the presence of NaCl induced an increase of the activity of CAT, relatively to that observed when orgaisms were exposed solely to copper, both for embryos and tadpoles. Also, in some copper concentrations, the presence of NaCl caused an increase or decrease in the activity of LDH in embryos and tadpoles, respectively. In addition, and contrarirly to what was reported for copper, it was observed that embryos were more sensitive to increased salinity (NaCl) than tadpoles. The results obtained in the present study, highlighted the need, within the context of ecological risk evaluation, to characterize the sensitivity of different life stages of amphibians to different chemicals and to the combination of diverse stressors.
As populacões de anfíbios estão em declínio a nível mundial. Duas das principais causas para este declínio são a contaminação química e alterações climáticas (e.g. aumento das temperaturas, salinização de zonas costeiras). De facto, os anfíbios podem ser muito sensíveis a estes agentes perturbadores, visto possuírem uma pele fina e permeável, sem protecção física, que permite a respiração cutânea mas também a difusão de agentes químicos presentes no ambiente. Além disso, o seu ciclo de vida bifásico expõe-os a contaminação aquática, terrestre, e atmosférica, potenciando o seu período de exposição. Consequentemente, é necessário compreender os efeitos que a contaminação química pode ter neste grupo de organismos, e de que modo outros factores podem influenciar a sua sensibilidade à perturbação química. Deste modo, o presente estudo pretendeu avaliar a influência do estádio de vida e da presença de outros agentes perturbadores na toxicidade de cobre em rã verde, Pelophylax perezi (Seoane). Para atingir este objectivo principal, foram delineados dois objectivos específicos: (i) comparar a sensibilidade de diferentes estádios de vida (embriões verusus girinos) ao cobre (Experiência 1), e (ii) avaliar a influência do aumento de salinidade (efeito indirecto das alterações climáticas em lagoas de água doce costeiras) na toxicidade de cobre para embriões e girinos de P.perezi (Experiência 2). Para tal, foram usados ovos no estádio de Gosner 10-11 e girinos no estádio de Gosner 25 para realizar ensaios de toxicicidade com 96h de exposição. Na primeira experiência, os dois estádios de vida foram expostos a um gradiente de cobre mais um controlo (FETAX). Na segunda experiência, os embriões e girinos foram expostos a combinações de cobre e NaCl (para simular um aumento de salinidade) num desenho experimental bifactorial completo. Nas duas experiências foram monitorizadas as seguintes respostas aos agentes perturbadores: (i) para os embriões, a mortalidade foi registada a cada 24h e no final do ensaio o tamanho corporal final e a taxa de malformações nas larvas sobreviventes; (ii) no caso dos girinos, a mortalidade e o comportamento natatório foram monitorizados a cada 24h. Adicionalmente, no final da segunda experiência (em que foi avaliada a influência de NaCl na toxicidade de cobre), foi quantificada a actividade enzimática da catalase (CAT), colinesterase (ChE), glutationa S-transferase (GST) e lactato desidrogenase (LDH) nas larvas (que eclodiram no final do ensaio-96h) e nos girinos. Os resultados obtidos demonstraram que os embriões foram menos sensíveis ao cobre do que os girinos (cerca de 50% de mortalidade na concentração de 1.6 mg/L Cu e LC50=0.93 mg/L Cu respectivamente). Mais ainda, foi observado que o NaCl não influenciou a toxicidade letal do cobre nos girinos, mas reduziu significativamente a toxicidade do cobre nos embriões. Relativamente às respostas enzimáticas, não foi observado um padrão consistente de repostas aos vários tratamentos. No entanto, em algumas concentrações de cobre, combinadas com NaCl, observou-se que a presença de NaCl induziu a actividade da enzima CAT relativamente ao efeito observado apenas pela presença de cobre. Verificou-se ainda que, em algumas concentrações de cobre, a presença de NaCl induziu uma redução e um aumento da actividade da LDH em girinos e embriões, respectivamente, em comparação com a actividade da enzima em exposições só a cobre. Mais ainda, e contrário ao que foi registado para o cobre, foi observado que os embriões apresentaram uma maior sensibilidade ao aumento da salinidade (NaCl) do que os girinos. Os resultados obtidos no presente estudo destacam a necessidade de, num contexto das avaliações de risco ecológico, caracterizar a sensibilidade dos diferentes estádios de vida dos anfibios a diferentes químicos e a combinações de de agentes perturbadores.
Waterman, Kellie Lynne. "Interaction of Gold Nanoparticles with a Supported Lipid Bilayer Using Quartz Crystal Microblance with Dissipation." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/291.
Full textTashjian, Diran Hovsep. "Selenium toxicokinetics, chronic toxicity, and interaction with salinity stress in white sturgeon /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textHsieh, Gin-Chang. "The Immunological and Neurochemical Toxicity of Benzene and its Interaction with Toluene in Mice." DigitalCommons@USU, 1988. https://digitalcommons.usu.edu/etd/4645.
Full textMd, Amin Roswati. "Copepods in Skeletonema-dominated food webs : Toxicity and nutritional quality as factors controlling copepod-diatom interactions." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49411.
Full textBooks on the topic "Interactive toxicity"
Maljković, Teodora. Health effects of ash from coal gasification and interaction with heavy metals in rats =: Zdravstveni učinak šljake iz uplinjavanja ugljena i interakcija s teškim metalima u štakora. Zagreb: Jugoslavenska akademija znanosti i umjetnosti, 1988.
Find full textPatisaul, Heather B., and Scott M. Belcher. The Path Forward. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0008.
Full textMineral fibres: Crystal chemistry, chemical-physical properties, biological interaction and toxicity. Mineralogical Society, 2017.
Find full textGualtieri, A. F., ed. Mineral fibres: Crystal chemistry, chemical-physical properties, biological interaction and toxicity. Mineralogical Society of Great Britain & Ireland, 2017. http://dx.doi.org/10.1180/emu-notes.18.
Full textWetzel, Ronald, and Rakesh Mishra. Structural Biology. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0012.
Full textCavanna, Andrea E. Phenytoin. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198791577.003.0010.
Full textMaysinger, Dusica, P. Kujawa, and Jasmina Lovrić. Nanoparticles in medicine. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.14.
Full textPadmakumar, Anand D., and Mark C. Bellamy. Pathophysiology and causes of jaundice in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0192.
Full textOlkkola, Klaus T., Hugo E. M. Vereecke, and Martin Luginbühl. Drug interactions in anaesthetic practice. Edited by Michel M. R. F. Struys. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0021.
Full textBook chapters on the topic "Interactive toxicity"
Kungolos, A., V. Batziaka, P. Samaras, G. P. Sakellaropoulos, A. M. Kipopoulou, A. Zoumboulis, and Th Kouimtzis. "Using Toxkits for calculating interactive effects of chemicals." In New Microbiotests for Routine Toxicity Screening and Biomonitoring, 487–93. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4289-6_54.
Full textKatsifis, Spiros P., and Patrick L. Kinney. "Antagonistic Interaction of Sodium Arsenite and Lead Sulfate with UV Light on Sister Chromatid Exchanges in Human Peripheral Lymphocytes." In Toxicity Assessment Alternatives, 53–61. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-59259-718-5_5.
Full textLee, Wing-Kee. "Cell Organelles as Targets of Cadmium Toxicity." In Cadmium Interaction with Animal Cells, 83–105. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89623-6_4.
Full textIsphording, Wayne C. "Comparison of the Toxicity Characteristic Leaching Procedure (TCLP) with bioavailability determined by selective stripping, ion site partitioning analysis." In Water-Rock Interaction, 879–83. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-219.
Full textSpagnoletti, Federico N., Raúl S. Lavado, and Romina Giacometti. "Interaction of Plants and Arbuscular Mycorrhizal Fungi in Responses to Arsenic Stress: A Collaborative Tale Useful to Manage Contaminated Soils." In Mechanisms of Arsenic Toxicity and Tolerance in Plants, 239–55. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1292-2_10.
Full textJiang, Xiaofeng, and Mei Li. "Interaction of Microplastics and Heavy Metals: Toxicity, Mechanisms, and Environmental Implications." In The Handbook of Environmental Chemistry, 185–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/698_2020_460.
Full textWimmer, M. A., K. H. Muehling, A. Läuchli, P. H. Brown, and H. E. Goldbach. "Interaction of salinity and boron toxicity in wheat (Triticum aestivum L.)." In Plant Nutrition, 426–27. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_206.
Full textDavis-Carter, J. G., M. B. Parker, and T. P. Gaines. "Interaction of soil zinc, calcium, and pH with zinc toxicity in peanuts." In Plant-Soil Interactions at Low pH, 339–47. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3438-5_39.
Full textIlinskaya, Anna N., and Marina A. Dobrovolskaia. "Interaction Between Nanoparticles and Plasma Proteins: Effects on Nanoparticle Biodistribution and Toxicity." In Polymer Nanoparticles for Nanomedicines, 505–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41421-8_15.
Full textDollery, C. T. "The Assessment of Efficacy, Toxicity and Quality of Care in Long-Term Drug Treatment." In Ciba Foundation Symposium 44 - Research and Medical Practice: Their Interaction, 73–95. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720264.ch6.
Full textConference papers on the topic "Interactive toxicity"
Wright, Austin P., Omar Shaikh, Haekyu Park, Will Epperson, Muhammed Ahmed, Stephane Pinel, Diyi Yang, and Duen Horng Chau. "RECAST: Interactive Auditing of Automatic Toxicity Detection Models." In Chinese CHI 2020: The eighth International Workshop of Chinese CHI. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3403676.3403691.
Full textLiu, B. L., and J. J. McGrath. "Vitrification Solutions for the Cryopreservation of Tissue-Engineered Bone." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32556.
Full textWang, Kexin, Xiang Sang, Shuanghuang Xiao, Hongqin Yang, Yiru Peng, Shusen Xie, and Jianling Chen. "Interaction of gold nanorods with ovarian cells: toxicity, uptake and intracellular distribution." In Eleventh International Conference on Information Optics and Photonics (CIOP 2019), edited by Hannan Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2548784.
Full textDesai, Kaushal, David Brott, Xiaohua Hu, and Anastasia Christianson. "A Systems Biology Approach for Detecting Toxicity-Related Hotspots inside Protein Interaction Networks." In 2011 IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB). IEEE, 2011. http://dx.doi.org/10.1109/hisb.2011.61.
Full textSrikanth, M., H. Misak, S. Y. Yang, and R. Asmatulu. "Effects of Morphology, Concentration and Contact Duration of Carbon-Based Nanoparticles on Cytotoxicity of L929 Cells." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52296.
Full textGoel, Raghav, Neha Shah, Rachana Visaria, Giulio F. Paciotti, and John C. Bischof. "Biodistribution of TNF-alpha Coated Gold Nanoparticles in an In Vivo Cancer Model." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192931.
Full textKungolos, A., V. Tsiridis, H. Nassopoulos, P. Samaras, and N. Tsiropoulos. "Toxicity assessment of fosthiazate, metalaxyl-M and imidacloprid and their interaction with copper on Daphnia magna." In ENVIRONMENTAL TOXICOLOGY 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/etox060221.
Full textShah, Neha B., and John C. Bischof. "Effect of Surface Charge on Gold Nanoparticle Biotransport: An In Vivo Blood and Biodistribution Study." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53324.
Full textBuyukhatipoglu, Kivilcim, Tiffany A. Miller, and Alisa Morss Clyne. "Biocompatible, Superparamagnetic, Flame Synthesized Iron Oxide Nanoparticles: Cellular Uptake and Toxicity Studies." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68049.
Full textBasuki, Sovia Aprina, Neva Melinda Maulanasari, and Engrid Juni Astuti. "Toxicity on Class of Antibiotic Agents Using Toxtree Software and Its Interaction with Its Receptors Using Molecular Virtual Docker Software." In Health Science International Conference (HSIC 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/hsic-17.2017.28.
Full textReports on the topic "Interactive toxicity"
Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/878161.
Full text