Journal articles on the topic 'Interelectrode gap'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interelectrode gap.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xin, Bin, Ming Gao, Shujuan Li, and Bin Feng. "Modeling of Interelectrode Gap in Electric Discharge Machining and Minimum Variance Self-Tuning Control of Interelectrode Gap." Mathematical Problems in Engineering 2020 (March 9, 2020): 1–20. http://dx.doi.org/10.1155/2020/5652197.
Full textArash Zulkarnain Ahmad Rozaini, Abdullah Abdulhameed, Revathy Deivasigamani та ін. "Characterization of 20 μm Dielectrophoretic Interelectrode Gap for Staphylococcus Aureus Rapid Detection Application". International Journal of Nanoelectronics and Materials (IJNeaM) 17, June (2024): 281–86. http://dx.doi.org/10.58915/ijneam.v17ijune.869.
Full textStrelchuk, Roman, and Oleksandr Shelkovyi. "SIMULATION OF THE INTERELECTRODE GAP IN ELECTRICAL DISCHARGE GRINDING WITH CHANGING ELECTRODE POLARITY." Bulletin of the National technical university "Kharkiv Polytechnic Institute" Series: Techniques in a machine industry, no. 2 (October 2, 2022): 88–95. http://dx.doi.org/10.20998/2079-004x.2022.2(6).12.
Full textXin, Bin, Shujuan Li, Xincheng Yin, and Xiong Lu. "Dynamic Observer Modeling and Minimum-Variance Self-Tuning Control of EDM Interelectrode Gap." Applied Sciences 8, no. 9 (2018): 1443. http://dx.doi.org/10.3390/app8091443.
Full textТренькин, А. А., К. И. Алмазова, А. Н. Белоногов та ін. "Динамика начальной фазы искрового и диффузного разрядов в воздухе в промежутке острие--плоскость при различных параметрах острийного электрода". Журнал технической физики 89, № 4 (2019): 512. http://dx.doi.org/10.21883/jtf.2019.04.47305.309-18.
Full textKamaraj, Abishek B., and Murali M. Sundaram. "Analytical and Experimental Study of Electrochemical Micromilling." International Journal of Manufacturing, Materials, and Mechanical Engineering 5, no. 2 (2015): 1–16. http://dx.doi.org/10.4018/ijmmme.2015040101.
Full textBimurzaev, S. B., and Z. S. Sautbekova. "INFLUENCE OF THE INTERELECTRODE GAP WIDTH ON THE QUALITY OF FOCUSING OF ELECTROSTATIC MIRRORS WITH ROTATIONAL SYMMETRY." Eurasian Physical Technical Journal 21, no. 4(50) (2024): 149–57. https://doi.org/10.31489/2024no4/149-157.
Full textSmirnov, A. P., and O. V. Khvoshchan. "Investigation of the Influence of Technological Operating Conditions of Electric Discharge Installations on the Pre-Breakdown Characteristics of an Electric Discharge." Elektronnaya Obrabotka Materialov 58, no. 5 (2022): 71–84. http://dx.doi.org/10.52577/eom.2022.58.5.71.
Full textМиназетдинов, Н. М. "Electrochemical machining of metals with motionless cathode-tools." Vestnik of Russian New University. Series «Complex systems: models, analysis, management», no. 2 (June 28, 2024): 3–9. http://dx.doi.org/10.18137/rnu.v9187.24.02.p.3.
Full textChernika, I.M., M.K. Bologa, O.I. Mardarskii, and I.V. Kozhevnikov. "Peculiarities of Nucleate Boiling Heat Transfer in Electroconvective Flow." Elektronnaya Obrabotka Materialov 55(2) (April 15, 2019): 44–51. https://doi.org/10.5281/zenodo.2629550.
Full textSvetlichnyi, Alexander M., Oleg A. Ageev, Evgeny Yu Volkov, Igor L. Jityaev, and Maxim V. Dem'yanenko. "Modelling of the Influence of a Pointed Field Emission Cathode Design from the Silicon Carbide with Graphene Film on the Electric Field Strength." Applied Mechanics and Materials 752-753 (April 2015): 163–67. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.163.
Full textWang, Minghuan, Yaobin Zhang, Xufeng Xu, Guoda Chen, Adam T. Clare, and Nuhaize Ahmed. "Effects of tool intermittent vibration on helical internal hole processing in electrochemical machining." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 12 (2018): 4102–11. http://dx.doi.org/10.1177/0954406218792591.
Full textRenev, Maksim E., Yuri V. Dobrov, Valery A. Lashkov, and Igor Ch Mashek. "The numerical simulation of air heating dynamics by interelectrode discharge." Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 8, no. 4 (2021): 683–94. http://dx.doi.org/10.21638/spbu01.2021.414.
Full textISAACSON, LEON, and SUE NICOLSON. "A Reappraisal of the Oil-Gap Technique For the Measurement of Transtubular Potentials in Insect Epithelia." Journal of Experimental Biology 141, no. 1 (1989): 429–40. http://dx.doi.org/10.1242/jeb.141.1.429.
Full textShvaleva, N. A., A. A. Fadeev, and I. Ya Shestakov. "Electric field simulation in the electrochemical machining of a thin-walled part cavity." iPolytech Journal 28, no. 1 (2024): 64–71. http://dx.doi.org/10.21285/1814-3520-2024-1-64-71.
Full textWei, B., K. P. Rajurkar, and S. Talpallikar. "Identification of Interelectrode Gap Sizes in Pulse Electrochemical Machining." Journal of The Electrochemical Society 144, no. 11 (1997): 3913–19. http://dx.doi.org/10.1149/1.1838110.
Full textRajurkar, K. P., B. Wei, J. Kozak, and J. A. McGeough. "Modelling and Monitoring Interelectrode Gap in Pulse Electrochemical Machining." CIRP Annals 44, no. 1 (1995): 177–80. http://dx.doi.org/10.1016/s0007-8506(07)62301-4.
Full textPshchelko, Nikolai, and Ekaterina Vodkailo. "Features of Electrostatic Fields and Their Force Action When Using Micro- and Nanosized Inter-Electrode Gaps." Materials 13, no. 24 (2020): 5669. http://dx.doi.org/10.3390/ma13245669.
Full textKunar, Sandip, and Bijoy Bhattacharyya. "Fabrication of various micropatterns by maskless micro-electrochemical texturing." Manufacturing Review 6 (2019): 6. http://dx.doi.org/10.1051/mfreview/2019006.
Full textGorokh, G. G., I. A. Taratyn, A. N. Pligovka, A. A. Lazavenka, and A. I. Zakhlebayeva. "AUTOELECTRONIC CATHODES BASED ON ARRAYS OF NIOBIUM-OXIDE COLUMNAR NANOSTRUCTURES FOR FIELD EMISSION DISPLAYS." Doklady BGUIR, no. 7 (125) (December 7, 2019): 51–58. http://dx.doi.org/10.35596/1729-7648-2019-125-7-51-58.
Full textPoklonov, S. G. "Determination of the breakdown voltage of an aqueous interelectrode gap." Surface Engineering and Applied Electrochemistry 46, no. 1 (2010): 64–69. http://dx.doi.org/10.3103/s1068375510010114.
Full textZhou, Shuofang, Dengyong Wang, Tianyu Fu, and Di Zhu. "Evolution of the Interelectrode Gap during Co-Rotating Electrochemical Machining." Metals 13, no. 10 (2023): 1771. http://dx.doi.org/10.3390/met13101771.
Full textSawicki, Jerzy, and Tomasz Paczkowski. "Electrochemical Machining of Curvilinear Surfaces of Revolution: Analysis, Modelling, and Process Control." Materials 15, no. 21 (2022): 7751. http://dx.doi.org/10.3390/ma15217751.
Full textAquigeh, Ivan Newen, Merlin Zacharie Ayissi, and Dieudonné Bitondo. "Multiphysical Models for Hydrogen Production Using NaOH and Stainless Steel Electrodes in Alkaline Electrolysis Cell." Journal of Combustion 2021 (March 19, 2021): 1–11. http://dx.doi.org/10.1155/2021/6673494.
Full textKozak, J., K. P. Rajurkar, and B. Wei. "Modelling and Analysis of Pulse Electrochemical Machining (PECM)." Journal of Engineering for Industry 116, no. 3 (1994): 316–23. http://dx.doi.org/10.1115/1.2901947.
Full textSmirnov, O.P., V.G. Zhekul, O.V. Khvoshchan, V.V. Litvinov, O.O. Kovalenko, and S.V. Konotop. "Influence of the interelectrode distance on the amplitude of the pressure wave during underwater spark discharge and underwater electrical wire explosion." Elektronnaya Obrabotka Materialov 55 (6) (October 29, 2019): 79–84. https://doi.org/10.5281/zenodo.3522295.
Full textPang, Gui Bing, Wen Ji Xu, Jin Jin Zhou, and Dian Ming Li. "Gear Finishing and Modification Compound Process by Pulse Electrochemical Finishing with a Moving Cathode." Advanced Materials Research 126-128 (August 2010): 533–38. http://dx.doi.org/10.4028/www.scientific.net/amr.126-128.533.
Full textJAIN, V. K., A. S. CHAUHAN, ANURAG THAKUR, and AJAY SIDPARA. "FABRICATIONS OF MICRO TOOLS AND MICRO PATTERNS BY ELECTROCHEMICAL MICROMACHINING AND SOME INVESTIGATION INTO OVERPOTENTIAL." Journal of Advanced Manufacturing Systems 12, no. 02 (2013): 85–106. http://dx.doi.org/10.1142/s0219686713500054.
Full textKolenchin, Nikolay, and Denis Denisenko. "Anodizing under conditions of oxygen activation of the inter-electrode gap." MATEC Web of Conferences 346 (2021): 02023. http://dx.doi.org/10.1051/matecconf/202134602023.
Full textShkol'Nik, S. M. "The Plasma Parameters in the Interelectrode Gap of the Vacuum Arc." IEEE Transactions on Plasma Science 13, no. 5 (1985): 336–38. http://dx.doi.org/10.1109/tps.1985.4316433.
Full textLyubimov, Victor, Vladimir Volgin, Inna Gnidina, and Vladislav Krasilnikov. "The Scanning Dimensional Microelectrochemical Machining with the Ultra-small Interelectrode Gap." Procedia CIRP 55 (2016): 89–94. http://dx.doi.org/10.1016/j.procir.2016.08.032.
Full textKulikov, Y. M., M. Kh Gadzhiev, D. V. Savitskiy, and E. E. Son. "The Rating Curve for an Interelectrode Gap of Low-Temperature Plasma." Herald of Dagestan State University 35, no. 1 (2020): 60–70. http://dx.doi.org/10.21779/2542-0321-2020-35-1-60-70.
Full textLevko, Dmitry. "Runaway Electrons in Gas Discharges: Insights from the Numerical Modeling." Plasma 8, no. 1 (2025): 12. https://doi.org/10.3390/plasma8010012.
Full textZubarev, Nikolay M., Olga V. Zubareva, and Michael I. Yalandin. "Features of Electron Runaway in a Gas Diode with a Blade Cathode." Electronics 11, no. 17 (2022): 2771. http://dx.doi.org/10.3390/electronics11172771.
Full textTodorovic-Markovic, Biljana, Z. Markovic, N. Marinkovic, and Tomislav Nenadovic. "Experimental study of physical parameters significant in fullerene synthesis." Journal of the Serbian Chemical Society 68, no. 7 (2003): 543–47. http://dx.doi.org/10.2298/jsc0307543t.
Full textAshurbekov, N. A., K. O. Iminov, K. T. Taibov, and G. M. Yusupova. "The generation of accelerated electrons in the nanosecond discharge in the short interelectrode gap." Modern Physics Letters B 29, no. 19 (2015): 1550102. http://dx.doi.org/10.1142/s021798491550102x.
Full textSyasko, V. A., I. S. Gnivush, and A. S. Musikhin. "Influence of Interfering Parameters in Electrospark Testing of Paint Coatings." Vestnik IzhGTU imeni M.T. Kalashnikova 26, no. 2 (2023): 26–33. http://dx.doi.org/10.22213/2413-1172-2023-2-26-33.
Full textOkunkova, Anna A., Marina A. Volosova, Elena Y. Kropotkina, Khaled Hamdy, and Sergey N. Grigoriev. "Electrical Discharge Machining of Alumina Using Ni-Cr Coating and SnO Powder-Mixed Dielectric Medium." Metals 12, no. 10 (2022): 1749. http://dx.doi.org/10.3390/met12101749.
Full textKumar, Niraj, Ram Prakash Lamba, Afaque M. Hossain, Anand Abhishek, and Ram Prakash. "Effect of Tapered Interelectrode Gap Region on Pseudospark-Sourced Electron Beam Emission." IEEE Transactions on Electron Devices 67, no. 3 (2020): 1211–14. http://dx.doi.org/10.1109/ted.2019.2962872.
Full textMullya, S. A., та G. Karthikeyan. "Accretion behavior and debris flow along interelectrode gap in μED-milling process". International Journal of Advanced Manufacturing Technology 96, № 9-12 (2018): 4381–92. http://dx.doi.org/10.1007/s00170-018-1861-9.
Full textCao, Wenjian, Dengyong Wang, and Di Zhu. "Modeling and experimental validation of interelectrode gap in counter-rotating electrochemical machining." International Journal of Mechanical Sciences 187 (December 2020): 105920. http://dx.doi.org/10.1016/j.ijmecsci.2020.105920.
Full textColli, A. N., R. Toelzer, M. E. H. Bergmann, and J. M. Bisang. "Mass-transfer studies in an electrochemical reactor with a small interelectrode gap." Electrochimica Acta 100 (June 2013): 78–84. http://dx.doi.org/10.1016/j.electacta.2013.03.134.
Full textSerheiev, Anton, Viktor Bokov, and Vitaly Shmelov. "Improvement of the EDM Head for DIMENSIONAL Treatment of Rods with an Arc on the Basis of a Desktop Drilling Machine." National Interagency Scientific and Technical Collection of Works. Design, Production and Exploitation of Agricultural Machines, no. 54 (2024): 47–54. https://doi.org/10.32515/2414-3820.2024.54.47-54.
Full textGruzdev, Andrey A., Yuriy A. Morgunov, and Boris P. Saushkin. "Mechanism of EDM Intensification at Ultrasound Application." Defect and Diffusion Forum 410 (August 17, 2021): 21–27. http://dx.doi.org/10.4028/www.scientific.net/ddf.410.21.
Full textKolenchin, Nikolay F., and Denis V. Denisenko. "Variability of Surface Strengthening of Aluminum Cylinders of Internal Combustion Engines." International Journal of Engineering Research in Africa 54 (June 2021): 12–22. http://dx.doi.org/10.4028/www.scientific.net/jera.54.12.
Full textStrelchuk, Roman. "REGULATION OF THERMAL PROCESSES DURING ELECTROEROSIVE GRINDING WITH VARIABLE ELECTRODE POLARITY." Bulletin of the National technical university "Kharkiv Polytechnic Institute" Series: Techniques in a machine industry, no. 2(10) (December 27, 2024): 41–49. https://doi.org/10.20998/2079-004x.2024.2(10).05.
Full textZhuravlev, M. V., G. E. Remnev, and B. G. Shubin. "Volume Self–Sustained Discharge in Atmospheric Pressure Gas with High Pulse Repetition Frequency." Applied Mechanics and Materials 756 (April 2015): 269–74. http://dx.doi.org/10.4028/www.scientific.net/amm.756.269.
Full textXu, Wen Ji, Bin Tao, Gui Bing Pang, Xu Yue Wang, and Xiao Hui Zhao. "Crown Modification of Cylinder-Roller Bearing Raceway Using Electrochemical Abrasive Belt Grinding." Key Engineering Materials 359-360 (November 2007): 335–39. http://dx.doi.org/10.4028/www.scientific.net/kem.359-360.335.
Full textWei, Ze Fei, Xing Hua Zheng, and Bin Tao. "Research of Bearing Crown Roller-Raceway by Non-Uniform Interelectrode Gap Electrochemical Mechanical Machining." Advanced Materials Research 690-693 (May 2013): 2475–79. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2475.
Full textZhai, X. B., Wen Ji Xu, Gui Bing Pang, Han Yun Li, and Jian Jiang Zhou. "On Characteristics of Flow-Field and Interelectrode Gap in Pulse Electrochemical Finishing (PECF)." Key Engineering Materials 259-260 (March 2004): 572–76. http://dx.doi.org/10.4028/www.scientific.net/kem.259-260.572.
Full text