Academic literature on the topic 'Interface Electronic Circuits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interface Electronic Circuits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interface Electronic Circuits"
Manukyan, Vahram K. "Software applications in modeling of physical processes in radio engineering and electronics in the context of distance learning." Physics of Wave Processes and Radio Systems 24, no. 1 (May 6, 2021): 89–97. http://dx.doi.org/10.18469/1810-3189.2021.24.1.89-97.
Full textYun, Eun Jeong, Jong Tae Park, and Chong Gun Yu. "An maximum power point tracking interface circuit for low-voltage DC-type energy harvesting sources." Bulletin of Electrical Engineering and Informatics 11, no. 6 (December 1, 2022): 3108–18. http://dx.doi.org/10.11591/eei.v11i6.4124.
Full textLiew Hui Fang, Rosemizi Abd Rahim, Muhammad Izuan Fahmi, Junita Mohd Nordin, and Aini Syuhada Md Zain. "Review of Active Circuit and Passive Circuit Techniques to Improve the Performance of Highly Efficient Energy Harvesting Systems." Journal of Advanced Research in Applied Sciences and Engineering Technology 31, no. 1 (June 13, 2023): 271–90. http://dx.doi.org/10.37934/araset.31.1.271290.
Full textGoeritno, Arief, and Ika Setyawibawa. "An Electronic Device Reviewed by Diagnosing on the Modules Embodiment." International Journal of Electronics and Communications Systems 1, no. 2 (December 28, 2021): 41–55. http://dx.doi.org/10.24042/ijecs.v1i2.10383.
Full textŽemva, Andrej, Andrej Trost, and Baldomir Zajc. "Educational Programmable System for Prototyping Digital Circuits." International Journal of Electrical Engineering & Education 35, no. 3 (July 1998): 236–44. http://dx.doi.org/10.1177/002072099803500306.
Full textBoni, Andrea, Michele Caselli, Alessandro Magnanini, and Matteo Tonelli. "CMOS Interface Circuits for High-Voltage Automotive Signals." Electronics 11, no. 6 (March 21, 2022): 971. http://dx.doi.org/10.3390/electronics11060971.
Full textPolachan, Kurian, Baibhab Chatterjee, Scott Weigand, and Shreyas Sen. "Human Body–Electrode Interfaces for Wide-Frequency Sensing and Communication: A Review." Nanomaterials 11, no. 8 (August 23, 2021): 2152. http://dx.doi.org/10.3390/nano11082152.
Full textStornelli, Vincenzo, Leonardo Pantoli, Gianluca Barile, Alfiero Leoni, and Emanuele D’Amico. "Silicon Photomultiplier Sensor Interface Based on a Discrete Second Generation Voltage Conveyor." Sensors 20, no. 7 (April 5, 2020): 2042. http://dx.doi.org/10.3390/s20072042.
Full textXu, Yunsong, Shen Yin, Jinyong Yu, and Hamid Reza Karimi. "Design of a TFT-LCD Based Digital Automobile Instrument." Mathematical Problems in Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/549790.
Full textHasegawa, Daiki, Yuto Takeshita, Feng Li, Kyosuke Sano, Masamitsu Tanaka, Taro Yamashita, and Akira Fujimaki. "Demonstration of Interface Circuits Between Half- and Single- Flux- Quantum Circuits." IEEE Transactions on Applied Superconductivity 31, no. 5 (August 2021): 1–4. http://dx.doi.org/10.1109/tasc.2021.3072846.
Full textDissertations / Theses on the topic "Interface Electronic Circuits"
So, Biu 1959. "THE METHODOLOGY AND IMPLEMENTATION OF RELAXATION METHOD TO INVESTIGATE ELECTRO-THERMAL INTERACTIONS IN SOLID-STATE INTEGRATED CIRCUITS." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276384.
Full textHonghao, Tang. "A Study on Interface Circuits for Piezoelectric Energy Harvesting." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144497.
Full textRahim, Md Sayed Kaysar Jaeger Richard C. Suhling J. C. "Die stress characterization and interface delamination study in flip chip on laminate assemblies." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/doctoral/RAHIM_MD_37.pdf.
Full textDOMIENIKAN, CLAUDIO. "interface eletronica para aquisicao de 12 espectros de coincidencias gama-gama atrasadas." reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10889.
Full textMade available in DSpace on 2014-10-09T14:00:53Z (GMT). No. of bitstreams: 1 07000.pdf: 5722600 bytes, checksum: edb0cc6215efd576d172c12ba778c4bf (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Yamamoto, Silas Demmy. "Integração de sistema transceptor de 60 GHz para aplicações sem fio de interface multimídia de alta definição." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259229.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-18T12:44:03Z (GMT). No. of bitstreams: 1 Yamamoto_SilasDemmy_M.pdf: 5306597 bytes, checksum: 9dd3930c43415f31bf913b4d374c25eb (MD5) Previous issue date: 2011
Resumo: O trabalho intitulado Integração de Sistema Transceptor de 60 GHz para Aplicações Sem Fio de Interface Multimídia de Alta Definição (Wireless HDMI) foi realizado na empresa STMicroelectronics (França), no departamento de P&D de Tecnologia / CAD Central e Soluções, como requisito para a obtenção do título de mestre. O objetivo deste trabalho foi de pesquisar e propor uma integração de sistema do tipo Sistema no Empacotamento (SiP ou System in Package) a nível industrial, com o desenvolvimento de um Módulo de Múltiplos Chips (MCM ou Multi-Chip Module) de camadas cerâmicas com tecnologia Cerâmica Cossinterizada sob Alta Temperatura (HTCC), integrando componentes de diferentes tecnologias - um circuito integrado CMOS 65 nm, um circuito integrado monolítico de micro-ondas (MMIC) de Arseneto de Gálio (GaAs) comercial e antenas IPD (Dispositivo de Integração Passiva) de vidro. Além disso foram desenvolvidas técnicas de projeto de integração na tecnologia HTCC, atendendo-se às regras para fabricação e montagem industrial. Utilizaram-se no projeto ferramentas software de projeto de simulação elétrica e eletromagnética, resultando no módulo com área de 13 x 8 mm2 e 1,12 mm de espessura incluindo os componentes. Nas linhas de transmissão do sinal a 60 GHz e de banda base foram medidas perdas de inserção de 1,0 dB/mm e 0,6 dB respectivamente. A antena integrada no módulo apresentou um ganho mínimo de 6 dBi (de 53,5 a 59,5 GHz), com perda de retorno maior que 10 dB (de 51 a 63 GHz) e um pequeno deslocamento em relação à banda especificada. Os resultados de medição de algumas amostras demonstraram que a tecnologia HTCC, para integração do sistema, é viável tanto em termos de desempenho, quanto nos aspectos industrial e comercial, mesmo antes da análise da montagem e desempenho do MMIC HPA e do sistema
Abstract: This Master's degree work, entitled System-in-Package (SiP) Integration of 60 GHz Transceiver for Wireless High Definition Multimedia Interface Application, was executed at STMicroelectronics Company (France), Minatec site in the department of Research and Technological Development/Central CAD and Solutions Department, under the guidance of PhD. Andreia Cathelin. The objective was to research and propose a SiP integration for industrial production. The Multi-Chip Module with ceramic materials (MCM-C) of High Temperature Cofired Ceramic technology (HTCC) was developed. Components and devices of different technologies - an RF 65 nm CMOS Integrated Circuit (IC), a commercial Gallium Arsenide (GaAs) monolithic microwave IC (MMIC), and IPD (Integrated Passive Device) antennas with glass substrate - were integrated into the same module. Further design techniques were developed complying with techniques for industrial assembly and the design rules of Kyocera, the company which provides HTCC technology and module manufacturing. The complete system integration was designed with electronic design automation (EDA) software tools with electrical and electromagnetic simulation resulting in a 13 x 8 mm2 area and 1.12 mm thickness module including its components. The 60 GHz and the base band transmission lines presented an insertion loss of 1.0 dB/mm and 0.6 dB respectively. The IPD antenna integrated in the module presented a 6 dBi minimum gain (53.5 to 59.5 GHz band) with return loss above 10 dB (51 to 63 GHz band) and a small shift of the frequency band. The measurement results of some assembled samples showed that HTCC technology is viable in terms of performance and industrial production for the 60 GHz application, even before the analysis of MMIC HPA and the system evaluation
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Masoud, Khalid Hasan. "Circuits and controls for grid-connected inverters." Thesis, Queensland University of Technology, 2002.
Find full textForbes, Mark Graham. "Electronic design issues in high-bandwidth parallel optical interfaces to VLSI circuits." Thesis, Heriot-Watt University, 1999. http://hdl.handle.net/10399/598.
Full textSilay, Kanber Mithat. "High Performance Cmos Capacitive Interface Circuits For Mems Gyroscopes." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607518/index.pdf.
Full textm CMOS process. Fabricated interfaces are characterized by measuring their ac responses, noise response and transient characteristics for a sinusoidal input. It is observed that, biasing impedances up to 60 gigaohms can be obtained with subthreshold transistors. Self biasing architecture eliminates the need for biasing the source of the subthreshold transistor to set the output dc point to 0 V. Single ended SOG gyroscopes are characterized with the single ended capacitive interfaces, and a 45 dB gain improvement is observed with the addition of capacitive interface to the drive mode. Minimum resolvable capacitance change and displacement that can be measured are found to be 58.31 zF and 38.87 Fermi, respectively. The scale factor of the gyroscope is found to be 1.97 mV/(°
/sec) with a nonlinearity of only 0.001% in ±
100 °
/sec measurement range. The bias instability and angle random walk of the gyroscope are determined using Allan variance method as 2.158 °
/&
#8730
hr and 124.7 °
/hr, respectively.
Finn, Steven Ernest. "Interface circuit designs for extreme environments using SiGe BiCMOS technology." Thesis, Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22679.
Full textSmith, O'neil Lohanica. "Design and use of surface modifiers as tools for understanding and controlling interfaces in organic electronics." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51838.
Full textBooks on the topic "Interface Electronic Circuits"
1950-, Watkinson John, ed. Digital interface handbook. Boston: Elsevier Focal Press, 2003.
Find full text1966-, Baumann Konrad, and Thomas Bruce 1954-, eds. User interface design of electronic appliances. London: Taylor & Francis, 2001.
Find full textGorby, Andrew. Development of a schematic capture graphical user interface for SPICE. Dublin: University College Dublin, 1995.
Find full text1950-, Watkinson John, ed. The digital interface handbook. 2nd ed. Oxford: Focal Press, 1995.
Find full textRoermund, Arthur van. Analog Circuit Design:: Sensor and Actuator Interface Electronics, Integrated High-Voltage Electronics and Power Management, Low-Power and High-Resolution ADC's. U.S.: Springer, 2005.
Find full text1938-, Huijsing Johan H., Steyaert Michiel 1959-, and Roermund, Arthur H. M. van., eds. Analog circuit design: Sensor and actuator interface electronics, integrated high-voltage electronics and power management, low-power and high-resolution ADC's. Boston: Kluwer Academic, 2004.
Find full textBushby, Richard J. Liquid Crystalline Semiconductors: Materials, properties and applications. Dordrecht: Springer Netherlands, 2013.
Find full text1962-, Cortadella J., ed. Logic synthesis for asynchronous controllers and interfaces. Berlin: Springer, 2002.
Find full textBook chapters on the topic "Interface Electronic Circuits"
Fraden, Jacob. "Interface Electronic Circuits." In Handbook of Modern Sensors, 191–270. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19303-8_6.
Full textFraden, Jacob. "Interface Electronic Circuits." In Handbook of Modern Sensors, 173–246. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6466-3_5.
Full textBarnes, John R. "Designing Interface Circuits." In Robust Electronic Design Reference Book, 556–70. New York, NY: Springer US, 2004. http://dx.doi.org/10.1007/1-4020-7830-7_23.
Full textGrecki, M., G. Jabłoński, and A. Napieralski. "MOPS — parallel environment for simulation of electronic circuits using physical models of semiconductor devices." In Recent Advances in Parallel Virtual Machine and Message Passing Interface, 478–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63697-8_120.
Full textFiorillo, A. S., S. A. Pullano, R. Tiriolo, and J. D. Vinko. "Iono-Electronic Interface Based on Innovative Low Temperature Zeolite Coated NMOS (Circuits) for Bio-nanosensor Manufacture." In Nanomaterials for Security, 201–14. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7593-9_16.
Full textIyer, Shivkumar V. "User Interface." In Simulating Nonlinear Circuits with Python Power Electronics, 35–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73984-7_3.
Full textWilliams, Ian, Lieuwe Leene, and Timothy G. Constandinou. "Next Generation Neural Interface Electronics." In Circuit Design Considerations for Implantable Devices, 141–78. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337522-7.
Full textIyer, Shivkumar V. "Interface for User Control Functions." In Simulating Nonlinear Circuits with Python Power Electronics, 63–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73984-7_4.
Full textLopez, Carolina Mora, and Xiaohua Huang. "Circuits and Architectures for Neural Recording Interfaces." In Biomedical Electronics, Noise Shaping ADCs, and Frequency References, 45–57. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28912-5_3.
Full textLienig, Jens, and Juergen Scheible. "Bridges to Technology: Interfaces, Design Rules, and Libraries." In Fundamentals of Layout Design for Electronic Circuits, 83–126. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39284-0_3.
Full textConference papers on the topic "Interface Electronic Circuits"
Franzon, Paul D. "Molecular electronic circuits." In 2007 2nd International Workshop on Advances in Sensors and Interface. IEEE, 2007. http://dx.doi.org/10.1109/iwasi.2007.4420001.
Full textDallago, E., D. Miatton, G. Venchi, V. Bottarel, G. Frattini, G. Ricotti, and M. Schipani. "Electronic interface for Piezoelectric Energy Scavenging System." In ESSCIRC 2008 - 34th European Solid-State Circuits Conference. IEEE, 2008. http://dx.doi.org/10.1109/esscirc.2008.4681877.
Full textNaus, Sebastien, Ioulia Tzouvadaki, Pierre-Emmanuel Gaillardon, Armando Biscontini, Giovanni De Micheli, and Sandro Carrara. "An efficient electronic measurement interface for memristive biosensors." In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2017. http://dx.doi.org/10.1109/iscas.2017.8050685.
Full textBiccario, G. E., M. De Vittorio, and S. D'Amico. "A 2.4μW input power electronic interface circuit for piezoelectric MEMS harvesters." In ESSCIRC 2017 - 43rd IEEE European Solid-State Circuits Conference. IEEE, 2017. http://dx.doi.org/10.1109/esscirc.2017.8094541.
Full textTao, Xiao Ming, and David Dagan Feng. "A wearable, wireless electronic interface for textile sensors lin shu." In 2010 IEEE International Symposium on Circuits and Systems - ISCAS 2010. IEEE, 2010. http://dx.doi.org/10.1109/iscas.2010.5537973.
Full textSchmitz, Joseph A., Jonathan M. Sherman, Sam Hansen, Samuel J. Murray, Sina Balkir, and Michael W. Hoffman. "A Low-Power, Single-Chip Electronic Skin Interface for Prosthetic Applications." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702424.
Full textRobert, Charlotte, Sylvie Pommier, Stephane Lefebvre, Marion Ortali, and Michel Massiot. "Mechanical Behavior and Damage of Tridimensional Multilayered Ceramics-Tungsten Power Electronic Substrates." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82305.
Full textOsenbach, John, B. Q. Wang, Sue Emerich, John DeLucca, and Dongmei Meng. "Corrosion of the Cu/Al interface in Cu-Wire-bonded integrated circuits." In 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC). IEEE, 2013. http://dx.doi.org/10.1109/ectc.2013.6575782.
Full textElmala, M. A., A. Omar, A. Metawea, A. Ismail, A. S. Elmallah, A. I. Saeed, A. Elsayed, et al. "Electronic interface system with 7.5/12.5V actuation for MEMS accelerometer." In 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT). IEEE, 2017. http://dx.doi.org/10.1109/accs-peit.2017.8302992.
Full textGurrum, Siva, Shivesh Suman, Yogendra Joshi, and Andrei Fedorov. "Thermal Issues in Next Generation Integrated Circuits." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35309.
Full text