Journal articles on the topic 'Interface neuronale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interface neuronale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Goto, Toichiro, Nahoko Kasai, Rick Lu, Roxana Filip, and Koji Sumitomo. "Scanning Electron Microscopy Observation of Interface Between Single Neurons and Conductive Surfaces." Journal of Nanoscience and Nanotechnology 16, no. 4 (2016): 3383–87. http://dx.doi.org/10.1166/jnn.2016.12311.
Full textWang, Xinyuan. "Intracortical Brain-machine Interface for Restoring Sensory Motor Function: Progress and Challenges." International Journal of Biology and Life Sciences 3, no. 2 (2023): 31–38. http://dx.doi.org/10.54097/ijbls.v3i2.10514.
Full textBernardin, Evans, Christopher L. Frewin, Abhishek Dey, et al. "Development of an all-SiC neuronal interface device." MRS Advances 1, no. 55 (2016): 3679–84. http://dx.doi.org/10.1557/adv.2016.360.
Full textSahni, Deshdeepak, Andrew Jea, Javier A. Mata, et al. "Biocompatibility of pristine graphene for neuronal interface." Journal of Neurosurgery: Pediatrics 11, no. 5 (2013): 575–83. http://dx.doi.org/10.3171/2013.1.peds12374.
Full textCao, Jiong, Jenni I. Viholainen, Caroline Dart, Helen K. Warwick, Mark L. Leyland, and Michael J. Courtney. "The PSD95–nNOS interface." Journal of Cell Biology 168, no. 1 (2005): 117–26. http://dx.doi.org/10.1083/jcb.200407024.
Full textMacías Macías, José Manuel, Juan Alberto Ramírez Quintana, José Salvador Antonio Méndez Aguirre, Mario Ignacio Chacón Murguía, and Alma Delia Corral Sáenz. "Procesamiento embebido de p300 basado en red neuronal convolucional para interfaz cerebro-computadora ubicua." RECIBE, Revista ELECTRÓNICA DE COMPUTACIÓN, INFORMÁTICA, BIOMÉDICA Y ELECTRÓNICA 9, no. 2 (2021): B1—B24. http://dx.doi.org/10.32870/recibe.v9i2.153.
Full textLiang, Elaine, Jiuyun Shi, and Bozhi Tian. "Freestanding nanomaterials for subcellular neuronal interfaces." iScience 25, no. 1 (2022): 103534. http://dx.doi.org/10.1016/j.isci.2021.103534.
Full textKeskinbora, Kadircan H., and Kader Keskinbora. "Ethical considerations on novel neuronal interfaces." Neurological Sciences 39, no. 4 (2017): 607–13. http://dx.doi.org/10.1007/s10072-017-3209-x.
Full textPronker, Matti F., Roderick P. Tas, Hedwich C. Vlieg, and Bert J. C. Janssen. "Nogo Receptor crystal structures with a native disulfide pattern suggest a novel mode of self-interaction." Acta Crystallographica Section D Structural Biology 73, no. 11 (2017): 860–76. http://dx.doi.org/10.1107/s2059798317013791.
Full textMilekovic, Tomislav, Anish A. Sarma, Daniel Bacher, et al. "Stable long-term BCI-enabled communication in ALS and locked-in syndrome using LFP signals." Journal of Neurophysiology 120, no. 1 (2018): 343–60. http://dx.doi.org/10.1152/jn.00493.2017.
Full textSAKURAI, Yoshio. "Multi-neuronal activity-cell assembly-brain-machine interface." Japanese Journal of Physiological Psychology and Psychophysiology 24, no. 1 (2006): 57–67. http://dx.doi.org/10.5674/jjppp1983.24.57.
Full textMaksimenko, V. A., A. A. Harchenko, and A. Lüttjohann. "Automated System for Epileptic Seizures Prediction based on Multi-Channel Recordings of Electrical Brain Activity." Information and Control Systems, no. 4 (September 23, 2018): 115–22. http://dx.doi.org/10.31799/1684-8853-2018-4-115-122.
Full textFadeeva, Elena, Andrea Deiwick, Boris Chichkov, and Sabrina Schlie-Wolter. "Impact of laser-structured biomaterial interfaces on guided cell responses." Interface Focus 4, no. 1 (2014): 20130048. http://dx.doi.org/10.1098/rsfs.2013.0048.
Full textPatolsky, Fernando, Brian P. Timko, Gengfeng Zheng, and Charles M. Lieber. "Nanowire-Based Nanoelectronic Devices in the Life Sciences." MRS Bulletin 32, no. 2 (2007): 142–49. http://dx.doi.org/10.1557/mrs2007.47.
Full textHinterberger, Thilo, Ralf Veit, Barbara Wilhelm, Nikolaus Weiskopf, Jean-Jacques Vatine, and Niels Birbaumer. "Neuronal mechanisms underlying control of a brain-computer interface." European Journal of Neuroscience 21, no. 11 (2005): 3169–81. http://dx.doi.org/10.1111/j.1460-9568.2005.04092.x.
Full textFisher, Robert S. "12. Neuronal damage and epilepsy: basic and clinical interface." Epilepsy Research 10, no. 1 (1991): 80–89. http://dx.doi.org/10.1016/0920-1211(91)90098-z.
Full textGiuffrè, Mauro, Rita Moretti, Giuseppina Campisciano, et al. "You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS." Journal of Clinical Medicine 9, no. 11 (2020): 3705. http://dx.doi.org/10.3390/jcm9113705.
Full textDillon, Aiden P., Saba Moslehi, Bret Brouse, et al. "Evolution of Retinal Neuron Fractality When Interfacing with Carbon Nanotube Electrodes." Bioengineering 11, no. 8 (2024): 823. http://dx.doi.org/10.3390/bioengineering11080823.
Full textSeyock, Silke, Vanessa Maybeck, Emmanuel Scorsone, et al. "Interfacing neurons on carbon nanotubes covered with diamond." RSC Advances 7, no. 1 (2017): 153–60. http://dx.doi.org/10.1039/c6ra20207a.
Full textTamura, H., T. Kawashima, S. Suzuki, I. Fujita, and H. Kaneko. "Efficient Signal Processing of Multineuronal Activities for Neural Interface and Prosthesis." Methods of Information in Medicine 46, no. 02 (2007): 147–50. http://dx.doi.org/10.1055/s-0038-1625396.
Full textTaskin, Mehmet Berat, Ruodan Xu, Huiling Zhao, et al. "Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers." Physical Chemistry Chemical Physics 17, no. 14 (2015): 9446–53. http://dx.doi.org/10.1039/c5cp00413f.
Full textTay, Andy, Felix E. Schweizer, and Dino Di Carlo. "Micro- and nano-technologies to probe the mechano-biology of the brain." Lab on a Chip 16, no. 11 (2016): 1962–77. http://dx.doi.org/10.1039/c6lc00349d.
Full textWu, Xiaosa, David J. Craik та Quentin Kaas. "Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor". Marine Drugs 19, № 9 (2021): 482. http://dx.doi.org/10.3390/md19090482.
Full textLin, Yue-Xian, Shu-Han Li, and Wei-Chen Huang. "Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing." Micromachines 12, no. 9 (2021): 1057. http://dx.doi.org/10.3390/mi12091057.
Full textOchoa, Vanessa, Annalee J. Loeffler, and Christie D. Fowler. "Emerging Role of the Cerebrospinal Fluid – Neuronal Interface in Neuropathology." Neuro - Open Journal 2, no. 2 (2015): 92–98. http://dx.doi.org/10.17140/noj-2-118.
Full textBarnes, Peter J. "Neuroeffector mechanisms: The interface between inflammation and neuronal responses☆☆☆★." Journal of Allergy and Clinical Immunology 98, no. 5 (1996): S73—S83. http://dx.doi.org/10.1016/s0091-6749(96)70020-9.
Full textCortés-Llanos, Belén, Rossana Rauti, Ángel Ayuso-Sacido, Lucas Pérez, and Laura Ballerini. "Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks." Biomolecules 13, no. 5 (2023): 783. http://dx.doi.org/10.3390/biom13050783.
Full textDeriabin, Konstantin V., Sergey O. Kirichenko, Alexander V. Lopachev, Yuriy Sysoev, Pavel E. Musienko, and Regina M. Islamova. "Ferrocenyl-containing silicone nanocomposites as materials for neuronal interfaces." Composites Part B: Engineering 236 (May 2022): 109838. http://dx.doi.org/10.1016/j.compositesb.2022.109838.
Full textWolfrum, Bernhard, Yulia Mourzina, Frank Sommerhage, and Andreas Offenhäusser. "Suspended Nanoporous Membranes as Interfaces for Neuronal Biohybrid Systems." Nano Letters 6, no. 3 (2006): 453–57. http://dx.doi.org/10.1021/nl052370x.
Full textCoyle, Damien, Jose Principe, Fabien Lotte, and Anton Nijholt. "Guest Editorial: Brain/neuronal - Computer game interfaces and interaction." IEEE Transactions on Computational Intelligence and AI in Games 5, no. 2 (2013): 77–81. http://dx.doi.org/10.1109/tciaig.2013.2264736.
Full textMünzberg, Heike, Elizabeth Floyd, and Ji Suk Chang. "Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige?" Physiology 36, no. 4 (2021): 246–55. http://dx.doi.org/10.1152/physiol.00038.2020.
Full textVomero, Maria, Elisa Castagnola, Emma Maggiolini, et al. "A Direct Comparison of Glassy Carbon and PEDOT-PSS Electrodes for High Charge Injection and Low Impedance Neural Interfaces." Advances in Science and Technology 102 (October 2016): 68–76. http://dx.doi.org/10.4028/www.scientific.net/ast.102.68.
Full textWeigel, Tobias, Julian Brennecke, and Jan Hansmann. "Improvement of the Electronic—Neuronal Interface by Natural Deposition of ECM." Materials 14, no. 6 (2021): 1378. http://dx.doi.org/10.3390/ma14061378.
Full textAbdullaeva, Oliya S., Matthias Schulz, Frank Balzer, et al. "Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor–Electrolyte Interface." Langmuir 32, no. 33 (2016): 8533–42. http://dx.doi.org/10.1021/acs.langmuir.6b02085.
Full textVermaas, M., M. C. Piastra, T. F. Oostendorp, N. F. Ramsey, and P. H. E. Tiesinga. "FEMfuns: A Volume Conduction Modeling Pipeline that Includes Resistive, Capacitive or Dispersive Tissue and Electrodes." Neuroinformatics 18, no. 4 (2020): 569–80. http://dx.doi.org/10.1007/s12021-020-09458-8.
Full textSarmiento-Ramos, José Luis. "Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica." Revista UIS Ingenierías 19, no. 4 (2020): 1–18. http://dx.doi.org/10.18273/revuin.v19n4-2020001.
Full textGáspár, Szilveszter, Tiziana Ravasenga, Raluca-Elena Munteanu, Sorin David, Fabio Benfenati, and Elisabetta Colombo. "Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces." Materials 14, no. 16 (2021): 4761. http://dx.doi.org/10.3390/ma14164761.
Full textMesiti, Fabio, and Ilangko Balasingham. "Nanomachine-to-Neuron Communication Interfaces for Neuronal Stimulation at Nanoscale." IEEE Journal on Selected Areas in Communications 31, no. 12 (2013): 695–704. http://dx.doi.org/10.1109/jsac.2013.sup2.1213002.
Full textKudoh, Suguru N., Chie Hosokawa, Ai Kiyohara, Takahisa Taguchi, and Isao Hayashi. "Biomodeling System - Interaction Between Living Neuronal Networks and the Outer World." Journal of Robotics and Mechatronics 19, no. 5 (2007): 592–600. http://dx.doi.org/10.20965/jrm.2007.p0592.
Full textEggers, M. D. "Electronically wired petri dish: A microfabricated interface to the biological neuronal network." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, no. 6 (1990): 1392. http://dx.doi.org/10.1116/1.585084.
Full textLiopo, Anton V., Michael P. Stewart, Jared Hudson, James M. Tour, and Todd C. Pappas. "Biocompatibility of Native and Functionalized Single-Walled Carbon Nanotubes for Neuronal Interface." Journal of Nanoscience and Nanotechnology 6, no. 5 (2006): 1365–74. http://dx.doi.org/10.1166/jnn.2006.155.
Full textWang, Sheng, Stephanie Szobota, Yuan Wang, et al. "All Optical Interface for Parallel, Remote, and Spatiotemporal Control of Neuronal Activity." Nano Letters 7, no. 12 (2007): 3859–63. http://dx.doi.org/10.1021/nl072783t.
Full textDiCaprio, R. A., and C. Schmidtmann. "A Multichannel Counter/Timer Interface for the Acquisition of Neuronal Spike Trains." IEEE Transactions on Biomedical Engineering BME-32, no. 5 (1985): 345–47. http://dx.doi.org/10.1109/tbme.1985.325553.
Full textReul, J. M. H. M. "S.05.02 Neuronal signaling and epigenetic mechanisms at the cognition-emotion interface." European Neuropsychopharmacology 20 (August 2010): S168—S169. http://dx.doi.org/10.1016/s0924-977x(10)70138-3.
Full textIslam, Asiful, and Latika Menon. "Interactions between E18 Rat Hippocampal Neurons and Au-Nanowire Arrays." Advanced Materials Research 383-390 (November 2011): 3863–68. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.3863.
Full textAlghazali, Karrer M., Rabab N. Hamzah, Zeid A. Nima, et al. "Plasmonic Nanofactors as Switchable Devices to Promote or Inhibit Neuronal Activity and Function." Nanomaterials 9, no. 7 (2019): 1029. http://dx.doi.org/10.3390/nano9071029.
Full textZheng, Ke. "Neuromodulation Based on Brain-computer Interface Technology." Highlights in Science, Engineering and Technology 36 (March 21, 2023): 460–67. http://dx.doi.org/10.54097/hset.v36i.5716.
Full textWelle, Theresa M., Kristen Alanis, Michelle L. Colombo, Jonathan V. Sweedler, and Mei Shen. "A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes." Chemical Science 9, no. 22 (2018): 4937–41. http://dx.doi.org/10.1039/c8sc01131a.
Full textLebedev, M. A. "BRAIN-COMPUTER INTERFACE FOR THE AUGMENTATION OF BRAIN FUNCTIONS." Science and Innovations in Medicine 1, no. 3 (2016): 11–27. http://dx.doi.org/10.35693/2500-1388-2016-0-3-11-27.
Full textLi, Zheng, Joseph E. O'Doherty, Mikhail A. Lebedev, and Miguel A. L. Nicolelis. "Adaptive Decoding for Brain-Machine Interfaces Through Bayesian Parameter Updates." Neural Computation 23, no. 12 (2011): 3162–204. http://dx.doi.org/10.1162/neco_a_00207.
Full text