Academic literature on the topic 'Interfacial tissues'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interfacial tissues.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interfacial tissues"
Hench, Larry L., and Julia M. Polak. "A Genetic Basis for Design of Biomaterials for In Situ Tissue Regeneration." Key Engineering Materials 377 (March 2008): 151–66. http://dx.doi.org/10.4028/www.scientific.net/kem.377.151.
Full textMichel, Raphaël, Léna Poirier, Quentin van Poelvoorde, Josette Legagneux, Mathieu Manassero, and Laurent Corté. "Interfacial fluid transport is a key to hydrogel bioadhesion." Proceedings of the National Academy of Sciences 116, no. 3 (January 2, 2019): 738–43. http://dx.doi.org/10.1073/pnas.1813208116.
Full textCerchiari, Alec E., James C. Garbe, Noel Y. Jee, Michael E. Todhunter, Kyle E. Broaders, Donna M. Peehl, Tejal A. Desai, Mark A. LaBarge, Matthew Thomson, and Zev J. Gartner. "A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity." Proceedings of the National Academy of Sciences 112, no. 7 (January 29, 2015): 2287–92. http://dx.doi.org/10.1073/pnas.1410776112.
Full textGrandfield, Kathryn, Anders Palmquist, and Håkan Engqvist. "High-resolution three-dimensional probes of biomaterials and their interfaces." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1963 (March 28, 2012): 1337–51. http://dx.doi.org/10.1098/rsta.2011.0253.
Full textSahu, Preeti, Daniel M. Sussman, Matthias Rübsam, Aaron F. Mertz, Valerie Horsley, Eric R. Dufresne, Carien M. Niessen, M. Cristina Marchetti, M. Lisa Manning, and J. M. Schwarz. "Small-scale demixing in confluent biological tissues." Soft Matter 16, no. 13 (2020): 3325–37. http://dx.doi.org/10.1039/c9sm01084j.
Full textMckee, Marc D., and Antonio Nanci. "Osteopontin: An Interfacial Extracellular Matrix Protein in Mineralized Tissues." Connective Tissue Research 35, no. 1-4 (January 1996): 197–205. http://dx.doi.org/10.3109/03008209609029192.
Full textFoty, Ramsey A., Gabor Forgacs, Cathie M. Pfleger, and Malcolm S. Steinberg. "Liquid properties of embryonic tissues: Measurement of interfacial tensions." Physical Review Letters 72, no. 14 (April 4, 1994): 2298–301. http://dx.doi.org/10.1103/physrevlett.72.2298.
Full textOtagiri, Risa, Hideki Kawai, Masanobu Takatsuka, Naoki Shinyashiki, Akira Ito, Ryosuke Ikeguchi, and Tomoki Aoyama. "Interfacial polarization of in vivo rat sciatic nerve with crush injury studied via broadband dielectric spectroscopy." PLOS ONE 16, no. 6 (June 2, 2021): e0252589. http://dx.doi.org/10.1371/journal.pone.0252589.
Full textLok, P., Philip Boughton, T. Kishen, and Ashish D. Diwan. "Geometrical & Interfacial Modulation of a Biomimetic Spinal Implant." Journal of Biomimetics, Biomaterials and Tissue Engineering 4 (December 2009): 41–58. http://dx.doi.org/10.4028/www.scientific.net/jbbte.4.41.
Full textChen, Xiaoyu, Hyunwoo Yuk, Jingjing Wu, Christoph S. Nabzdyk, and Xuanhe Zhao. "Instant tough bioadhesive with triggerable benign detachment." Proceedings of the National Academy of Sciences 117, no. 27 (June 23, 2020): 15497–503. http://dx.doi.org/10.1073/pnas.2006389117.
Full textDissertations / Theses on the topic "Interfacial tissues"
Massafra, Gabriele. "Electrospun scaffolds for regeneration of musculoskeletal interface tissues." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21485/.
Full textAliee, Maryam. "Dynamics and mechanics of compartment boundaries in developing tissues." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113236.
Full textWoodfield, Timothy Bryan Francis. "Interfacial shear strength criteria for tissue-engineered cartilage anchored to porous synthetic scaffolds." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0019/MQ49768.pdf.
Full textRevell, Christopher. "Modelling physical mechanisms driving tissue self-organisation in the early mammalian embryo." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276833.
Full textSimmons, Craig Alexander. "Modelling and characterization of mechanically regulated tissue formation around bone-interfacing implants." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0022/NQ49943.pdf.
Full textBeguinel, Johanna. "Interfacial adhesion in continuous fiber reinforced thermoplastic composites : from micro-scale to macro-scale." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI051.
Full textThe present study was initiated by the development of a new processing route, i.e. latex-dip impregnation, for thermoplastic (TP) acrylic semi-finished materials. The composites resulting from thermocompression of TPREG I plies were studied by focusing of interfacial adhesion. Indeed the fiber/matrix interface governs the stress transfer from matrix to fibers. Thus, a multi-scale analysis of acrylic matrix/fiber interfaces was conducted by considering microcomposites, as models for fiber-based composites, and unidirectional (UD)macro-composites. The study displayed various types of sized glass and carbon fibers. On one hand, the correlation between thermodynamic adhesion and practical adhesion, resulting from micromechanical testing, is discussed by highlighting the role of the physico-chemistry of the created interphase. Wetting and thermodynamical adhesion are driven by the polarity of the film former of the sizing. On the other hand, in-plane shear modulus values from off-axis tensile test results on UD composites are consistent with the quantitative analyses of the interfacial shear strength obtained from microcomposites. More specifically, both tests have enabled a differentiation of interface properties based on the fiber sizing nature for glass and carbon fiber-reinforced (micro-)composites. The study of overall mechanical and interface properties of glass and carbon fiber/acrylic composites revealed the need for tailoring interfacial adhesion. Modifications of the matrix led to successful increases of interfacial adhesion in glass fiber/acrylic composites. An additional hygrothermal ageing study evidenced a significant loss of interfacial shear strength at micro-scale which was not observed for UD composites. The results of this study are a first step towards a database of relevant interface properties of structural TP composites. Finally, the analyses of interfaces/phases at different scales demonstrate the importance of a multi-scale approach to tailor the final properties of composite parts
Schröder, Sven [Verfasser], Roland [Akademischer Betreuer] Thewes, Roland [Gutachter] Thewes, Stefano [Gutachter] Vassanelli, and Venuto Daniela [Gutachter] De. "A system for purely capacitive in-vivo neural tissue interfacing with high spatiotemporal resolution / Sven Schröder ; Gutachter: Roland Thewes, Stefano Vassanelli, Daniela De Venuto ; Betreuer: Roland Thewes." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156184894/34.
Full textNarayanan, Amal. "Physicochemical Cues for the Design of Underwater Adhesives." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1616164088200956.
Full textGonçalves, Raquel Maria da Costa. "One-step all-aqueous fabrication of tubular pre-endothelized structures." Master's thesis, 2021. http://hdl.handle.net/10773/31021.
Full textOs vasos sanguíneos são um dos constituintes mais importantes do corpo humano. São responsáveis por manter a função e sobrevivência dos tecidos, fornecendo oxigénio e nutrientes, bem como por fornecer moléculas essenciais e sinalização bioquímica durante os processos de desenvolvimento e regeneração dos tecidos que dependem da formação de novas estruturas vasculares. A capacidade de desenvolver estruturas ocas e tubulares in vitro que visam apoiar a função celular e recriar arquiteturas biológicas de tecidos nativos, como vasos sanguíneos, têm potencial de promover avanços científicos e tecnológicos nas áreas de engenharia de tecidos e medicina regenerativa. Os métodos clássicos para fabricar estruturas tubulares são frequentemente dependentes de pré- e pós-processamento ou de técnicas complexas que por vezes não são facilmente implementáveis, muitas vezes incompatíveis com arquiteturas de forma livre. A criação de materiais tubulares em forma de fibra através de métodos que permitem a sua fabricação direta e a sua deposição em formas e direções versáteis de uma maneira espacialmente controlada e tamanho controlado, pode ser a chave para superar algumas dessas limitações. Os sistemas bifásicos aquosos (ATPS), que se comportam como emulsões totalmente aquosas, começaram a ser explorados recentemente no campo biomedicina. Esses são usados principalmente como modelos para a geração de biomateriais sofisticados. A complexação interfacial de polieletrólitos de carga oposta tem sido explorada como uma estratégia valiosa para a produção de materiais usando o modelo ATPS. A maioria dos estudos na literatura tem se concentrado na fabricação de materiais de formato esférico para o encapsulamento de cargas bioativas e delicadas. No entanto, a produção de materiais fibrosos com estrutura tubular por esta estratégia tem sido pouco explorada, e sua capacidade de permitir o encapsulamento celular, viabilidade e cultura a longo prazo ainda não foi reportada. Neste projeto, propomos uma estratégia rápida para fabricar materiais em forma de fibra oca num ambiente totalmente aquoso estabilizado por uma membrana interfacial resultante da complexação de dois polieletrólitos de origem natural e de carga oposta. Estruturas simples ou ramificadas capazes de suportar a perfusão de liquidos foram produzidas, na qual as suas caracteristicas tubulares poderam ser confirmadas por microscopia eletrónica de varrimento. A estabilidade do biomaterial mostrou-se dependente da concentração dos polieletrólitos e do tempo de complexação, bem como do pH do sistema. Além disso, as propriedades mecânicas e comportamento de swelling puderam ser ajustadas pelo tempo de complexação, e o seu tamanho foi definido compreendendo diâmetros que variam de escalas milimétricas a micrométricas. O encapsulamento de células-tronco humanas derivadas do tecido adiposo (hASCs) demonstrou a capacidade de suportar a viabilidade e adesão celular até 7 dias, em sistemas contendo sequências adesivas. Fibras heterotipicas contendo hASCs em co-cultura com células endoteliais da veia umbilical humana (HUVECs) contribuiram para a sobrevivência das células endoteliais por pelo menos 14 dias, confirmado por imunocitoquímica. Este trabalho pode representar avanços relevantes na fabricação fácil e em apenas um passo de biomateriais com a capacidade mimetizar tecidos tubulares nativos com relevância biológica.
Mestrado em Biotecnologia
Books on the topic "Interfacial tissues"
Woodfield, Timothy Bryan Francis. Interfacial shear strength criteria for tissue-engineered cartilage anchored to porous synthetic scaffolds. Ottawa: National Library of Canada, 2000.
Find full textDental Hard Tissues and Bonding: Interfacial Phenomena and Related Properties. Springer, 2005.
Find full textEliades, George, Theodore Eliades, and David C. Watts. Dental Hard Tissues and Bonding: Interfacial Phenomena and Related Properties. Springer, 2014.
Find full textGeorge, Eliades, Watts D. C, and Eliades Theodore, eds. Dental hard tissues and bonding: Interfacial phenomena and related properties. Berlin: Springer, 2005.
Find full textMaterial-Tissue Interfacial Phenomena. Elsevier, 2017. http://dx.doi.org/10.1016/c2014-0-03726-4.
Full textMisra, Anil, and Paulette Spencer. Material-Tissue Interfacial Phenomena: Contributions from Dental and Craniofacial Reconstructions. Elsevier Science & Technology, 2016.
Find full textSimmons, Craig Alexander. Modelling and characterization of mechanically regulated tissue formation around bone-interfacing implants. 2000.
Find full text-O, Glantz P., Leach S. A, Ericson Thorild 1929-, and Research Group on Surface and Colloid Phenomena in the Oral Cavity., eds. Oral interfacial reactions of bone, soft tissue, and saliva: Proceedings of a workshop, November 9-11, 1984, Marstrand, Sweden. Oxford: IRL Press, 1985.
Find full textBook chapters on the topic "Interfacial tissues"
Ghosal, Krishanu, Rohit Khanna, and Kishor Sarkar. "Biopolymer Based Interfacial Tissue Engineering for Arthritis." In Orthopedic Biomaterials, 67–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89542-0_4.
Full textElnaggar, Mahmoud A., and Yoon Ki Joung. "Tissue-Inspired Interfacial Coatings for Regenerative Medicine." In Advances in Experimental Medicine and Biology, 415–20. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0947-2_22.
Full textPark, Joon B., and Roderic S. Lakes. "Soft Tissue Replacement II: Blood-Interfacing Implants." In Biomaterials, 265–91. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-2156-0_12.
Full textAthanassiou, Athanassia, Despina Fragouli, Ilker Bayer, Paolo Netti, Loris Rizzello, and Pier Paolo Pompa. "Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues." In Bioinspired Approaches for Human-Centric Technologies, 29–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04924-3_2.
Full textKwiat, Moria, and Fernando Patolsky. "2 Interfacing Biomolecules, Cells and Tissues with Nanowire-based Electrical Devices." In Modern Aspects of Electrochemistry, 67–104. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-2137-5_2.
Full textTian, Bozhi. "Nanowire Field-Effect Transistors for Electrical Interfacing with Cells and Tissue." In One-Dimensional Nanostructures, 515–29. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118310342.ch25.
Full textTayebi, Lobat, Reza Masaeli, and Kavosh Zandsalimi. "Application of 3D Printing in Reconstruction of Oral and Maxillofacial Multi- and Interfacial Tissue Defects." In 3D Printing in Oral & Maxillofacial Surgery, 167–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77787-6_7.
Full text"Water Associated with Bio-Objects: Cells and Tissues." In Nuclear Magnetic Resonance Studies of Interfacial Phenomena, 806–905. CRC Press, 2013. http://dx.doi.org/10.1201/b14202-12.
Full text"Adhesion of Cells and Tissues to Bioabsorbable Polymeric Materials: Scaffolds, Surgical Tissue Adhesives and Anti-adhesive Materials." In Surface and Interfacial Aspects of Cell Adhesion, 485–504. CRC Press, 2011. http://dx.doi.org/10.1201/b12179-30.
Full textHuang, Yixian, Jingjing Sun, and Song Li. "Rational Design of Polymeric Micelle for Cancer Therapy." In Advances in Medical Technologies and Clinical Practice, 311–36. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0751-2.ch012.
Full textConference papers on the topic "Interfacial tissues"
Pan, Yi, Assimina A. Pelegri, and David I. Shreiber. "Emulating the Interfacial Kinematics of CNS White Matter With Finite Element Techniques." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53579.
Full textDevaprakasam, D. "Nature Nanocomposite Versus Man-Made Nanocomposites: Studies of Nanoscale Structural, Chemical and Mechanical Hierarchy of a Fish Scale in Contrast With Man-Made Polymer Nanocomposites." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93085.
Full textKhandaker, M. P. H., Yanling Li, and Stefano Tarantini. "Interfacial Fracture Strength Measurement of Tissue-Biomaterial Systems." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65038.
Full textPaietta, Rachel C., Evalina Burger, and Virginia L. Ferguson. "Material Properties of the Developing Bone-Cartilage Interface in the Human Fetal Spine." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53774.
Full textLiu, Y. X., S. Thomopoulos, V. Birman, J. S. Li, and G. M. Genin. "Bi-Material Attachment Through a Soft Tissue Interfacial System." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19560.
Full textSarkar, Romit, Rusha Banerjee, Ghodrat Karami, and Fardad Azarmi. "Micromechanical Model for Examination and Characterization of Interfacial Response of Fibrous Composites." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39984.
Full textKatti, Kalpana S., Devendra Verma, Rahul Bhowmik, and Dinesh R. Katti. "Bioactivity and Mechanical Behavior of Polymer-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering." In ASME 2006 International Manufacturing Science and Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/msec2006-21051.
Full textCheng, Gary J., and Chang Ye. "Experiment, Thermal Simulation and Characterizations on Transmission Laser Coating of Hydroxyapatite on Metal Implant." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72290.
Full textChahine, Nadeen O., Nicole M. Collette, Heather Thompson, and Gabriela G. Loots. "Application of Carbon Nanotubes in Cartilage Tissue Engineering." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192494.
Full textBrahmbhatt, Khushboo, Wujun Zhao, Zhaojie Deng, Leidong Mao, and Eric Freeman. "Magnetically Responsive Droplet Interface Bilayer Networks." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9029.
Full text