Contents
Academic literature on the topic 'Interleukine 2, signalisation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interleukine 2, signalisation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Interleukine 2, signalisation"
Affaticati, Emilien-Pierre. "Signalisation glutamatergique à la synapse immunologique." Paris 11, 2006. http://www.theses.fr/2006PA114837.
Full textL-glutamate, the major excitatory neurotransmitter, also plays a role in peripheral tissues. Immune T cells express glutamate receptors and communicate through immunological synapses. T cell receptor signaling precedes mature immunological synapse formation, raising questions about the precise role of the synaptic structure. We show here that L-glutamate acts as an immunotransmitter at synapses between dendritic cells and thymic developing T cells. DCs express glutamate-specific vesicular VGLUT transporters and release glutamte through Ca2+- dependent exocytosis. Thymic T cells express functional NMDA receptors modulating the Ca2+ signal and apoptosis induced by T cell-DC interaction. NMDAR is corecruited with PSD-95 to contact zones, suggesting a role for TCR signaling in shaping a functional glutamatergic synapse. We propose that the glutamate release by DCs may elicit focal responses mediated by GluR signaling in developing T cells
Brochu-Bourque, Ariane. "Caractérisation fonctionnelle de la mutation M201V du récepteur CysLT[indice inférieur 2]." Mémoire, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/4080.
Full textGuizani, Lamia. "Signalisation de l'interleukine 2 : régulation du récepteur et induction du facteur de transcription AP-1." Paris 6, 1994. http://www.theses.fr/1994PA066815.
Full textMazard, Pasquier Virginie. "Le système IL-2/Récepteur de l'IL-2 : les dysfonctionnements de la voie de signalisation Jak/Stat dans le cadre de l'infection par le VIH." Paris 7, 2004. http://www.theses.fr/2004PA077128.
Full textPoncet, Nadège. "La voie ERK1/2 : point d'intégration et de convergence des connexions entre voies de signalisation dans les cellules épithéliales de prostate normale." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00824334.
Full textHassaine, Zohra Nabila. "Etude du rôle de la voie de signalisation Notch-Hes-Hey dans les effets d'IL-1β et du FGF2 sur la dédifférenciation des chondrocytes." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05S004.
Full textChondrocyte dedifferentiation is a key element of irreversible cartilage degradation induced by mechanical or cytokinic stress, or growth factors, as in degenerative osteoarthritis (OA). Our goal is to search for new therapeutical targets within this process, and Notch signaling has been reported to be strongly expressed during human OA. Objectives: To investigate the involvement of the Notch1/Hes1/Hey1 pathway as mediators of interleukin 1 β (IL-1β) and FGF2 in chondrocytes in vitro. Methods: Mouse or human articular chondrocytes were established in primary culture then challenged with IL-1β or FGF2. Notch-R1, Hes1/Hey1 and chondrogenic target genes expression was monitored by immunocytochemistry, q-rt-PCR, and immunoblotting. Hes1 involvement in IL-1β/FGF2 induced gene expression was investigated with a specific siRNA against Hes1. Results: In normoxia, Notch1-R labeling remained nuclear and stable in intensity in chondrocytes, irrespective of treatment. This suggested steady-state activation of this pathway. In contrast, Notch1-R labeling was located almost exclusively at the membrane or cytoplasm of chondrocytes in hypoxia, irrespective of treatment. Notch-R1 activation may thus be, at least in part, regulated by pO2 as supported by the inhibition of γ-secretase (Presenilin1) expression in hypoxia versus normoxia. In normoxia, addition of IL1β or FGF2 to the cells induced Hes1 translocation to the nucleus, suggesting the possibility of transcriptional effects. This was associated with a transient increase of Hes1 mRNA cyclic expression with mechanistic differences between the two effectors. Hes1 mRNA was increased 2.5-fold by IL-1β and 7-8-fold by FGF2. IL-1β elicited a loss of cyclicity in Hes1 expression while FGF2 conserved the cycles, akin to the effect of serum. These effects were transcriptional and occurred through NF-κB for both effectors but only through the p38 pathway for FGF2. Hey1 expression was not modified by IL-1β, while a 4-5 fold transient increase was observed with FGF2, always posterior to the Hes1 peak. Hey induction by FGF2 was transcriptional and depended on Hes1 expression (DRB). Hes1/ Hey inductions by IL-1β or FGF2 were insensitive to DAPT, a γ-secretase inhibitor, confirming the independence from novel activation of Notch-R. Hes1 expression was silenced by a specific siRNA, showing that the FGF2-induced Hey1 expression is under Hes1 control and ascertaining the role of Hes1 in chondrocyte phenotype modulations. Hes1 mediated IL-1β induction of MMP-13 and ADAMTS-5. Hes1 also mediated FGF2 up-regulation of MMP13 (partly) and Col2A isomer expression. Col2A is normally absent in post-natal mice cartilage, Col2B being the essential isoform of Type 2 collagen. Conversely, aging mice cartilage re-expresses Col2A abundantly as shown for human OA cartilage. Conclusion: Hes1 mediates IL-1β and FGF2 modulations of dedifferentiating chondrocyte phenotype (MMP13, Col2A). Thus the Hes1 pathway appears a valid target for therapeutical research on chondrocytes dedifferentiation, hence degradative cartilage diseases
Salavessa, Laura. "Single-molecule analysis of IL-2 receptor reveals the importance of its clustering for endocytosis and signaling in lymphocytes Shigella promotes major alteration of gut epithelial physiology and tissue invasion by shutting off host intracellular transport Stoichiometry of receptors at the plasma membrane during their endocytosis using Total Internal Reflection Fluorescent (TIRF) microscopy live imaging and single molecule tracking." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL031.
Full textSignaling by the interleukin-2 receptor (IL-2R) is regulated by its clathrin-independent endocytosis (CIE) and subsequent degradation, while playing a critical role in immunity. Interestingly, CIE lacks a coat protein that drives pit formation, raising the question of how the CIE vesicle is initiated. Protein clustering generates forces that can induce membrane conformational changes. Notably, IL-2R has been shown to accumulate at the base of membrane protrusions, where receptors might cluster and thereby initiate the pit.To study the relevance of IL-2R clustering in its endocytosis, we generated a CRISPR-edited T cell line expressing GFP-IL-2Rᵧ and analyzed its stoichiometry at the plasma membrane, by TIRF microscopy coupled to a single-molecule endocytic tracking method. We identified distinct IL-2Rᵧ cluster populations. IL-2Rᵧ seems to reach the cell surface as a preassembled cluster to which further molecules are added, reaching an optimal cluster size that is key for its internalization. Binding of IL-2 promotes the formation of endocytic clusters and receptor uptake, highlighting the importance of clustering for CIE internalization.Moreover, we found that cholesterol depletion increases the proportion of large, non-endocytic clusters as well as IL-2R signaling. Disruption of the actin meshwork also promotes the formation of large clusters, yet it decreases IL-2R signaling. Thus, both factors regulate IL-2R endocytosis and signaling in a distinct manner. Our results provide new insights into the mechanisms regulating receptor signaling and CIE