Academic literature on the topic 'Intermetallics alloy TiAl'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intermetallics alloy TiAl.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Intermetallics alloy TiAl"
Chen, Hua, Tian Yu Zhang, X. Y. Lu, Su Qiu Jia, and Zhi Long Chai. "A Study on Characteristics of TiH2-Al-Nb Alloyed Powder During High Energy Ball Milling." Materials Science Forum 688 (June 2011): 1–5. http://dx.doi.org/10.4028/www.scientific.net/msf.688.1.
Full textJia, Lei, and Long Fan. "Effects of Hydrogen on Diffusion Bonding of TiAl-Based Intermetallics with Hydrogenated Ti6AI4V Alloy Interlayer Containing 0.5wt% Hydrogen." Advanced Materials Research 750-752 (August 2013): 624–29. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.624.
Full textGóral, Marek, Tadeusz Kubaszek, Marcin Kobylarz, Marcin Drajewicz, and Maciej Pytel. "Thermal Barrier Coating Deposited Using the PS-PVD Method on TiAl-Nb-Mo Intermetallic Alloy with Different Types of Bond Coats." Solid State Phenomena 320 (June 30, 2021): 60–65. http://dx.doi.org/10.4028/www.scientific.net/ssp.320.60.
Full textJang, Ok Jun, Cheol-Woong Yang, and Dong Bok Lee. "Transmission Electron Microscopy Characterization of Thermomechanically Treated Al3Ti–(8, 10, 15)% Cr Intermetallics." Microscopy and Microanalysis 19, S5 (August 2013): 89–94. http://dx.doi.org/10.1017/s1431927613012403.
Full textChen, Wen Zhe, Kai Ping Peng, Kuang Wu Qian, and Hai Cheng Gu. "Effects of Forming Processing on Mechanical Properties of Ti-48Al-2Mn-2Nb Intermetallics." Key Engineering Materials 297-300 (November 2005): 471–76. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.471.
Full textRamos, Ana Sofia, M. Teresa Vieira, Sonia Simões, Filomena Viana, and Manuel F. Vieira. "Joining of Superalloys to Intermetallics Using Nanolayers." Advanced Materials Research 59 (December 2008): 225–29. http://dx.doi.org/10.4028/www.scientific.net/amr.59.225.
Full textBeretta, Stefano, Mauro Filippini, Luca Patriarca, and Silvia Sabbadini. "Analysis of Fatigue Damage Accumulation in TiAl Intermetallics." Key Engineering Materials 592-593 (November 2013): 30–35. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.30.
Full textZhang, Kai Feng, Shao Song Jiang, Zhen Lu, Guo Feng Wang, Chun Ping Zhang, and Ji Liang Yu. "Superplasticity of Nb-Si-Fe and TiAl Intermetallics Synthesized by Powder Metallurgy." Materials Science Forum 735 (December 2012): 113–19. http://dx.doi.org/10.4028/www.scientific.net/msf.735.113.
Full textSimas, Pablo, Thomas Schmoelzer, Svea Mayer, Maria L. Nó, Helmut Clemens, and Jose San Juan. "Relaxation Processes at High Temperature in TiAl-Nb-Mo Intermetallics." MRS Proceedings 1516 (2012): 41–46. http://dx.doi.org/10.1557/opl.2012.1576.
Full textSong, X. G., J. Cao, H. Y. Chen, Y. F. Wang, and J. C. Feng. "Brazing TiAl intermetallics using TiNi–V eutectic brazing alloy." Materials Science and Engineering: A 551 (August 2012): 133–39. http://dx.doi.org/10.1016/j.msea.2012.05.002.
Full textDissertations / Theses on the topic "Intermetallics alloy TiAl"
Prehradná, Jana. "Úprava oxidačních vlastností TiAl intermetalik přetavováním povrchu v řízené atmosféře." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231717.
Full textBird, Nigel. "The mechanical properties of #gamma#-TiAl based single crystals." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244598.
Full textManesh, Saeed Heshmati. "Phase transformation and thermomechanical treatment of TiAl based alloys containing silicon." Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307035.
Full textChen, Weijie. "Microstructure modification and mechanical behaviour of an investment cast near ã-TiAl intermetallic alloy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0016/NQ57605.pdf.
Full textChen, Weijie Carleton University Dissertation Engineering Mechanical and Aerospace. "Microstructure midification and mechanical behaviour of an investment cast near gamma-TiAl intermetallic alloy." Ottawa, 2000.
Find full textWang, Zhiqi. "Study of Ti-Al-Cr oxidation resistant coatings for γ-TiAl based intermetallic alloys." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/844155/.
Full textZollinger, Julien. "Influence de l'oxygène sur le comportement à la solidification d'aluminiures de titane binaires et alliés au niobium basés sur le composé intermétallique [gamma]-TiAI." Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL032N/document.
Full textThis study was performed in the framework of the IMPRESS, "Intermetallic Materials Processing in Relation to Earth and Space Solidification", and is dedicated to the understanding of the fundamental mechanisms that control solidification in a Ti-46Al-8Nb alloy selected for TiAl-based alloy turbine blade development. The first part of this work is devoted to study the influence of oxygen on the solidification behaviour of cast TiAl-based alloys containing from 40 to 48 at.% of Al. Increasing the oxygen content affects significantly the macrostructure of the as-cast ingots, increases volume fraction of the phase formed during the peritectic solidification and leads to a change of the [bêta] primary solidification phase to the [alpha] phase in the ternary Ti-44.2Al-1.4O, Ti-47.3Al-0.9O and Ti-47.2Al-1.5O (at.%) alloys. When [alpha] is the primary solidification phase, the partition coefficients has been determined as kAl[alpha]/l= 0,9 and kO(alpha]/l = 1,29. In a second part, the solidification behaviour of Ti-46Al-8Nb alloy is investigated, with a particular attention to the contamination and growth conditions effects on microstructures and microsegregation formations. For high contamination levels, the solidification phase is [alpha] where oxygen reduces solute mobility, leading to limited backdiffusion. In low oxygen containing alloys, [bêta] is the primary solidification phase, and oxygen leads to an extent of the segregation amplitude despite high level of back-diffusion in the bcc structure
Partaix, Axelle. "Contribution à l'étude de quelques transformations de phases dans des alliages à base TiAl." Rouen, 1996. http://www.theses.fr/1996ROUES060.
Full textHuguet, Anne. "Etude à la sonde atomique et par microscopie ionique à champ de la composition des phases alpha deux et gamma dans des alliages à base TiAl." Rouen, 1994. http://www.theses.fr/1994ROUES072.
Full textChen, Yao-Tang, and 陳耀堂. "The Study of Infrared Brazing TiAl/Ti3Al Intermetallics and Ti-6Al-4V Alloy." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/39241607532828165902.
Full text國立臺灣大學
材料科學與工程學研究所
96
Infrared vacuum brazing γ-TiAl/Ti-6Al-4V and α2-Ti3Al/ Ti-6Al-4V two kinds of samples using three Ti-based fillers: 60Ti-15Cu-25Ni, 70Ti-15Cu-15Ni and 40Ti-20Zr-20Cu-20Ni. For 60Ti-15Cu-25Ni and 70Ti-15Cu-15Ni fillers to braze γ-TiAl and Ti-6Al-4V, their brazed zone microstructures are quite similar. Next to γ-TiAl base metal, two layers are formed: one is composed of α2-Ti3Al+γ-TiAl lamellar mixtures and the other is a continuous α2-Ti3Al layer. The residual filler in the brazed zone is composed of Ti2Ni and Ti2Cu in which the decrement of residual filler can be achieved by increasing the brazing time and/or temperature. However, the thicknesses of the continuous α2-Ti3Al layer and α2-Ti3Al+γ-TiAl lamellar do not change by using different brazing conditions. When the residual filler is still existence, the crack will form in it and propagate until the sample failure. If the residual filler is already eliminated, the crack will form in the continuous γ-TiAl layer. For α2-Ti3Al/ Ti-6Al-4V sample, as compared to γ-TiAl/Ti-6Al-4V sample, there is no α2-Ti3Al+γ-TiAl lamellar and no a continuous α2-Ti3Al layer. When using 40Ti-20Zr-20Cu-20Ni filler, the brazed zone becomes more complicated. The most distinctive point is the residual filler can be composed of three intermetallics. The crack is also formed in the residual filler and then propagate until the sample failure. Because the Zr atoms are difficult to diffuse directly into two base metals, no matter how high of brazing temperature and how long of brazing time, the residual filler will not disappear. However, shear stress in this case can reach about 390MPa.
Book chapters on the topic "Intermetallics alloy TiAl"
Cheng, T. T., D. Hu, M. H. Loretto, and I. P. Jones. "γ-TiAl Alloy Development." In Intermetallics and Superalloys, 246–50. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch42.
Full textPérez, Pablo, and Paloma Adeva. "Effect of the Alloy Microstructure on the Oxidation Behaviour of TiAl Based Alloys." In Intermetallics and Superalloys, 194–99. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch33.
Full textZhang, D., V. Güther, N. Eberhardt, H. Kestler, and H. Clemens. "Control of Fully Lamellar Microstructures in a γ-TiAl Based Alloy." In Intermetallics and Superalloys, 134–39. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch23.
Full textChatterjee, A., U. Bolay, U. Sattler, and H. Clemens. "Adjustment of Differently Spaced Fully Lamellar Microstructures in a γ-TiAl Based Alloy and their Creep Behaviour." In Intermetallics and Superalloys, 233–39. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch40.
Full textShao, G., and P. Tsakiropoulos. "A Crystallographic Study of TiAl-Cr Alloys." In Intermetallics and Superalloys, 330–35. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch56.
Full textHageneder, P., R. Pippan, W. Knabl, H. Clemens, and B. Tabernig. "Fatigue Crack Propagation in Two γ-TiAl Sheet Alloys." In Intermetallics and Superalloys, 129–33. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch22.
Full textZhang, W. J., G. L. Chen, and F. Appel. "Effect of Nb Addition on the Phase Transformation of Gamma-TiAl Alloys." In Intermetallics and Superalloys, 362–67. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607285.ch61.
Full textGouthama, P. Sivagnanapalani, and M. Sujata. "Composition Analysis of Diffusion Bonded y-TiAl Intermetallic: TiAlV Alloy Interface by Using STEM." In Supplemental Proceedings, 947–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356074.ch119.
Full textHabel, Ulrike, Falko Heutling, Claudia Kunze, Wilfried Smarsly, Gopal Das, and Helmut Clemens. "Forged Intermetallic γ-TiAl Based Alloy Low Pressure Turbine Blade in the Geared Turbofan." In Proceedings of the 13th World Conference on Titanium, 1223–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119296126.ch208.
Full textKnippscheer, Sven, and Georg Frommeyer. "Intermetallic TiAl(Cr,Mo,Si) Alloys for Lightweight Engine Parts - Structure and Properties." In Materials for Transportation Technology, 12–18. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606025.ch3.
Full textConference papers on the topic "Intermetallics alloy TiAl"
Patriarca, Luca, Can Içöz, Mauro Filippini, and Stefano Beretta. "Microscopic Analysis of Fatigue Damage Accumulation in TiAl Intermetallics." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27091.
Full textKumar, Amar N., Amiya Nayak, Alka Srivastava, Udit K. Roy, and Prakash C. Patnaik. "TiAl Intermetallics for Aerospace Applications: Fracture Resistance and Cracking Mechanisms." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59566.
Full textTian, Zongjun, Lida Shen, Zhidong Liu, and Yinhui Huang. "Microstructure Characteristics and High-Temperature Oxidation Behavior of Plasma-Sprayed and Laser-Remelted MCrAlY Coatings on TiAl Intermetallics." In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50145.
Full textBeranoagirre, A., L. N. López de Lacalle, and Vicente Jesus Segui. "Milling of gamma TiAl intermetallic alloys." In THIRD MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE: MESIC-09. AIP, 2009. http://dx.doi.org/10.1063/1.3273661.
Full textBeranoagirre, A., and L. N. López de Lacalle. "Turning of gamma TiAl Intermetallic alloys." In THE 4TH MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE (MESIC 2011). AIP, 2012. http://dx.doi.org/10.1063/1.4707605.
Full textBeranoagirre, A., D. Olvera, L. N. López de Lacalle, G. Urbicain, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "DRILLING OF INTERMETALLIC ALLOYS GAMMA TIAL." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552313.
Full textPambudi, Muhammad Jajar, Eddy Agus Basuki, and Djoko Hadi Prajitno. "Improving hot corrosion resistance of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with enamel coating." In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974444.
Full textYuriy, Belokon, Zherebtsov Aleksandr, and Belokon Karina. "The investigation of nanostructure formation in intermetallic γ-TiAl alloys." In 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF). IEEE, 2017. http://dx.doi.org/10.1109/ysf.2017.8126640.
Full textPetrushynets, Lidiia V., Iurii V. Falchenko, Anatolii I. Ustinov, Oleh O. Novomlynets, and Svitlana M. Yushchenko. "Vacuum Diffusion Welding of Intermetallic Alloy ɣ-TiAl with High-Temperature Alloy EI437B Through Nanolayered Interlayers." In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2019. http://dx.doi.org/10.1109/ukrcon.2019.8879918.
Full textWang, Hua Ming, L. G. Yu, X. X. Li, and P. Jiang. "Microstructure and wear resistance of laser-surface-carbonized TiC/TiAl composite coating on a gamma-TiAl intermetallic alloy." In International Symposium on Industrial Lasers, edited by Fuxi Gan, Horst Weber, Zaiguang Li, and Qingming Chen. SPIE, 1999. http://dx.doi.org/10.1117/12.361109.
Full text