To see the other types of publications on this topic, follow the link: Interneurones striataux.

Dissertations / Theses on the topic 'Interneurones striataux'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 dissertations / theses for your research on the topic 'Interneurones striataux.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Fino, Elodie. "Transmission et plasticité activité-dépendante au niveau des synapses cortico-striatales." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00811483.

Full text
Abstract:
Le striatum a pour rôle de sélectionner et d'intégrer les informations provenant du cortex et ainsi construire et transmettre une réponse adaptée aux stimuli environnementaux. Nous avons caractérisé les propriétés électrophysiologiques des différents neurones du striatum (neurones de sortie, NETM, et interneurones) dans des conditions normales, et lors d'une déplétion de dopamine striatale. Grâce à un modèle de tranche de cerveau de rat dans laquelle les afférences cortico-striatales sont conservées intactes, nous avons mis en évidence une plasticité synaptique bidirectionnelle dans les NETM ainsi qu'une homéostasie puissante au niveau des synapses cortico-striatales. Nous avons ensuite observé que, outre les NETM, le cortex contacte également les interneurones striataux, avec une séquence d'activation particulière et qu'il existe une spécificité cellulaire de la " spike-timing dependent plasticity " (STDP) dans le striatum. Enfin, nous avons mis en évidence que, au niveau des NETM, des signaux sous-liminaires, en coïncidence avec une activité corticale, sont capables d'induire des phénomènes de plasticité synaptique à long-terme.
APA, Harvard, Vancouver, ISO, and other styles
2

Ztaou, Samira. "Implication des interneurones cholinergiques striataux dans la physiopathologie de la maladie de Parkinson : étude optogénétique, pharmacologique et comportementale." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4736/document.

Full text
Abstract:
La maladie de Parkinson (MP) est caractérisée par une perte dopaminergique dans le striatum, structure sous-corticale impliquée dans le contrôle moteur, la mémoire et les comportements émotionnels. Les interneurones cholinergiques (ChIs) striataux jouent un rôle clef dans cette réorganisation pathologique du striatum en modulant l’activité des neurones de projection striataux (MSNs). Ce travail vise à étudier l’implication des ChIs et des récepteurs muscariniques (mAChRs) dans les mécanismes qui sous-tendent l’expression des déficits moteurs, cognitifs et émotionnels dans différents modèles de la MP chez la souris. L’inhibition optogénétique des ChIs réduit les déficits moteurs (akinésie, asymétrie posturale, déficit sensori-moteur). Les enregistrements électrophysiologiques montrent que l’inhibition des ChIs réduit l’excitabilité des MSNs et rétablit l’équilibre d’activité des deux voies de sortie striatale. Ces effets antiparkinsoniens sont reproduits par le blocage pharmacologique striatal des mAChRs M1 et M4. Ils sont dus à une action préférentielle de l’ACh sur les mAChRs au niveau des MSNs à l’origine de la voie striatonigrale puisqu’ils disparaissent chez des souris invalidées pour les récepteurs M4 exprimés dans ces neurones. La photoinhibition des ChIs réduit les déficits mnésiques et l’anxiété. L’antagoniste des mAChRs M1 réduit l’anxiété mais est inefficace sur les déficits mnésiques, suggérant que d’autres récepteurs cholinergiques striataux puissent être engagés dans les fonctions mnésiques. L’ensemble de nos résultats apporte un éclairage nouveau sur l’implication des ChIs striataux dans le fonctionnement physiologique et pathologique du striatum
Parkinson’s disease (PD) is characterized by a dopamiergic loss into the striatum, a subcortical structure involved in motor control, memory and emotional behaviors. Striatal cholinergic interneurons (ChIs) play a key role in this pathological reorganization of the striatal circuitry by modulating striatal projection neurons (MSNs). This study aims to investigate the involvement of ChIs and muscarinic receptors (mAChRs) in the mechanisms underlying the expression of motor, cognitive and emotional deficits observed in different models of PD in mice. ChIs optogenetic inhibition reduced motor deficits (akinesia, postural asymmetry, sensorimotor deficit). Electrophysiological recordings show that ChIs photoinhibition reduces MSNs excitability and restores the balance between the two striatal output pathways. These antiparkinsonian effects are reproduced by pharmacological intrastriatal blockade of M1 and M4 mAChRs. They are due to a preferential action of ACh on mAChRs expressed on striatonigral MSNs since the deficits disappear in mutant mice that lack M4 mAChRs only in these neurons. ChIs photoinhibition also reduces memory deficits and anxiety. M1 mAChRs antagonist reduces anxiety but is inefficient on memory deficits, suggesting that other cholinergic receptors might be involved in striatal memory functions. Overall, these results give new insights on the role of cholinergic interneurons in the normal and pathological functioning of the striatum
APA, Harvard, Vancouver, ISO, and other styles
3

Chabbert, Dorian. "Conséquences de la délétion conditionnelle du gène Tshz3 dans la circuiterie cortico-striée : implications dans les troubles du spectre autistique." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0207.

Full text
Abstract:
Dès les stades précoces du développement et jusqu’à l’âge adulte, le facteur de transcription TSHZ3 est fortement exprimé dans les neurones pyramidaux (PNs) du cortex. Les PNs de la couche V forment la synapse cortico-striée en contactant les neurones épineux moyens (MSNs) du striatum. A ce niveau, l’expression de TSHZ3 n’est pas retrouvée dans les MSNs mais dans les interneurones cholinergiques (CINs). Des données récentes ont établi un lien entre délétion hétérozygote du gène TSHZ3/Tshz3, troubles du spectre autistique (TSA) et dysfonctionnement de la circuiterie cortico-striée (Caubit et al., Nat Genet 2016). Afin de mieux comprendre le rôle de TSHZ3 dans la circuiterie cortico-striée, nous avons caractérisé deux modèles murins de délétion conditionnelle de Tshz3, ciblant soit les neurones de projection à partir de la période postnatale (souris Tshz3-pnCxKO), soit les neurones cholinergiques à partir de la période embryonnaire (souris Tshz3-ChATCre). Chez les souris Tshz3-pnCxKO, la perte de TSHZ3 entraîne une moindre excitabilité des PNs de la couche V, ainsi qu’une diminution de la probabilité de libération du glutamate par leurs afférences. Nous montrons également une profonde altération du fonctionnement de la synapse cortico-striée. Chez les souris Tshz3-ChATCre, nous montrons que la perte de Tshz3 modifie les propriétés membranaires et de décharge d’une proportion des CINs, qui sont les seuls neurones cholinergiques de l'encéphale exprimant TSHZ3 de façon importante. Ces changements fonctionnels suggèrent que TSHZ3 joue un rôle clé dans le développement des PNs du cortex, de la voie cortico-striée et des CINs, confirmant son implication dans les TSA
The zinc-finger transcription factor TSHZ3 is highly expressed by cortical projection neurons (PNs) from embryonic stages to adulthood, including layer V pyramidal neurons that project to the striatum. There, TSHZ3 is expressed by cholinergic interneurons (CINs) but not by the main targets of PNs, i.e. the medium spiny neurons. Interestingly, recent evidences link heterozygous TSHZ3/Tshz3 gene deletion to autism spectrum disorder (ASD) and to corticostrial circuitry dysfunction (Caubit et al., Nat Genet 2016). In order to provide further insights on the role of Tshz3 in the corticostriatal circuitry, we have characterized two conditional KO mouse models in which its expression is lost either in projection neurons at early postnatal stage (Tshz3-pnCxKO) or in cholinergic cells beginning at embryonic stage (Tshz3-ChATCre). In Tshz3-pnCxKO mice, we confirmed that Tshz3 expression is lost in glutamatergic PNs without altering their number. Our electrophysiological study revealed that layer V PNs are less excitable and that glutamate release probability from their afferents is decreased. We also found dramatic changes of both corticostriatal synaptic transmission and plasticity. In ChAT-Cre mice, we found that Tshz3 is expressed in the striatum by almost 100% of CINs, while it is little or no expressed in the other cholinergic nuclei of the brain. Interestingly, the loss of Tshz3 impacts the spontaneous firing pattern of a subpopulation of CINs without altering their number. These functional changes suggest that TSHZ3 plays a key role in PNs, corticostriatal pathway and CINs development, supporting its implication in ASD
APA, Harvard, Vancouver, ISO, and other styles
4

Bell, M. I. "Characterisation of cholinergic interneurones in the rat striatum." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596535.

Full text
Abstract:
The physiology and pharmacology of rat striatal cholinergic interneurones has been characterised using the whole-cell patch-clamp technique, in situ hybridisation, single cell RT-PCR and dual fluorescence immunocytochemistry. Cholinergic interneurones displayed a characteristic resting electrophysiology. The resting membrane potential was relatively depolarised and was associated with a relatively large input resistance. All neurones showed a characteristic reduction in their voltage-current relationship that corresponded to the hyperpolarisation-activated current (Ih). Action potentials were associated with a relatively long afterhyperpolarisation. Substance P caused a depolarisation in cholinergic interneurones via a NK1 receptor-mediated Ca2+- activated inward current. The inward current was inhibited by the phospholipase C inhibitor U-73122, and by the inclusion of the inositol 1,4,5 triphosphate receptor antagonist heparin in the electrode solution. These findings correlated with gene expression studies showing the presence of NK1 receptors in these cells. The non-selective metabotropic glutamate (mGlu) receptor agonist 1S,3R-APCD caused a depolarisation of interneurones via a group I mGlu receptor-mediated Ca2+-activated inward current. The inward current was carried by two ionic components and could be inhibited by the PLC inhibitor U73122 and the PKC inhibitor chelerythrine. These findings were consistent with gene expression studies showing the presence of mGluR1 and mGluR5 receptors in these cells. In addition, cholinergic interneurones expressed mGluR2 and mGluR7. Intrastriatal stimulation evoked fast synaptic currents that were mediated by NMDA, AMPA and GABAA receptors.
APA, Harvard, Vancouver, ISO, and other styles
5

Petryszyn, Sarah. "Les neurones à calrétinine du striatum : comparaisons inter-espèces et études anatomopathologiques." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/28361.

Full text
Abstract:
Chez les primates, les interneurones GABAergiques qui expriment la calrétinine (CR) sont les interneurones les plus abondants du striatum. Pourtant, à ce jour, leur rôle reste encore mal connu. L’utilisation de techniques d’immunohistochimie en association avec des modèles animaux de la maladie de Parkinson, nous a permis de mieux caractériser ces interneurones. Une première série de travaux décrit pour la toute première fois la distribution et la composition neurochimique des interneurones CR+ chez la souris en condition normale. Ces données ont été directement comparées aux caractéristiques des interneurones CR+ chez les primates humains et non humains. Chez la souris, deux types morphologiques d’interneurones CR+ sont présents : l’un petit et l’autre de taille intermédiaire ; ils se répartissent de manière hétérogène dans le striatum dorsal. Chez le singe et l’humain, trois types morphologiques d’interneurones CR+ existent. En effet, en plus d’interneurones CR+ de petite taille et de taille intermédiaire, il existe des interneurones CR+ de grande taille qui appartiennent en majorité à la catégorie des interneurones cholinergiques du striatum. L’utilisation d’un modèle de souris transgénique Drd1a-tdTomato/Drd2-EGFP (D1/D2) a permis de confirmer que les interneurones cholinergiques exprimaient le récepteur à la dopamine (DA) D2 et de démontrer que les interneurones CR+ chez la souris sont dépourvus des récepteurs D1 et D2. Dans une seconde série de travaux, nous avons cherché à savoir comment la distribution et la composition neurochimique des interneurones CR+ étaient affectées dans le modèle murin de la maladie de Parkinson. Du côté de la lésion 6- hydroxydopamine (6-OHDA), les souris présentent une forte dénervation DAergique du striatum, l’une des principales caractéristiques de la maladie de Parkinson. Dans ces circonstances, seule la densité des interneurones CR+ de taille intermédiaire, dont 13 % apparaissent immunoréactifs pour la tyrosine hydroxylase (TH), est significativement diminuée dans le striatum dorsal. Bien que le noyau accumbens (Acb) subisse également une forte baisse de son innervation DAergique induite par la lésion 6-OHDA, les interneurones CR+ présents dans l’Acb, dont certains sont aussi immunoréactifs pour la calbindine (CB), ne sont pas affectés en terme de nombre et de distribution. La troisième série de travaux nous a permis de reproduire ces analyses chez le primate grâce à l’utilisation du modèle animal de la maladie de Parkinson par intoxication au 1-méthyl-4-phényl-1,2,3,6-tétrahydropyridine (MPTP). Les résultats indiquent que la densité des interneurones CR+ de grande taille est fortement accrue dans le striatum des animaux intoxiqués par le MPTP. Cette forte augmentation de la densité des interneurones CR+ de grande taille est couplée à une augmentation significative de la proportion d’interneurones ChAT+/CR+. L’ensemble de ces données suggère fortement que les interneurones striataux CR+ soient sensibles à une diminution de la concentration en DA dans le striatum dorsal, qui caractérise la maladie de Parkinson. Finalement, une quatrième série de travaux nous a permis de découvrir un regroupement de cellules de petite taille et au phénotype D1 au sein même de l’Acb chez la souris D1/D2, suggérant l’existence d’un nouvel îlot de Calleja dans cette région du cerveau.
In the primate striatum, GABAergic neurons that express calretinin (CR) are the most abundant interneurons. Their role within this major basal ganglia component is still unknown. Immunohistochemical techniques used in animal models of Parkinson’s disease allowed us to better characterize these interneurons. A first series of studies enabled us to provide the very first description of the distribution and neurochemical phenotype of the CR+ interneurons in mice striatum, under normal condition. Data was compared to similar findings that were gathered in human and non-human primates. In mice, two morphological phenotypes of CR+ interneurons are present: (1) small and (2) medium-sized CR+ interneurons, both distributed in a heterogeneous way within the dorsal striatum. In primates (both human and non-human), three morphological phenotypes of CR+ interneurons are present within the striatum. In addition to small and medium-sized CR+ interneurons, primates display large-sized CR+ interneurons, which mostly belong to the cholinergic interneurons of the striatum. The use of a double transgenic mouse model Drd1a-tdTomato/Drd2-EGFP (D1/D2) confirmed that the cholinergic interneurons express the dopaminergic (DA) receptor D2, while CR+ interneurons are devoid of D1 and D2. In a second study, we investigated how the distribution and the neurochemical phenotype of the CR+ interneurons are affected in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson’s disease. In the lesioned striatum, these mice displayed a strong DAergic depletion, one of the main hallmarks of Parkinson’s disease. Under these circumstances, only the density of the medium-sized CR+ interneurons, 13 % of which are immunoreactive for the tyrosine hydroxylase (TH), was decreased within the dorsal striatum. In the accumbens nucleus (Acb), the number and distribution pattern of CR+ interneurons, which are also immunoreactive for calbindin (CB), were not affected, despite that the Acb was also significantly depleted in DA. In a third study, the state of the CR+ striatal interneurons was investigated in a simian model of Parkinson’s disease, involving 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. Results indicate that the density of the large-sized CR+ interneurons is dramatically increased within the striatum of MPTP-intoxicated animals. This increase goes along with higher proportion of cholinergic interneurons expressing CR. Altogether, our data suggest that the CR+ interneurons are sensitive to a decrease of the DAergic level in the striatum that characterizes Parkinson’s disease. Finally, a detailed analysis of the Acb in the D1/D2 mice allowed us to detect the presence of a novel island of Calleja located within this brain region.
APA, Harvard, Vancouver, ISO, and other styles
6

Garas, Farid. "Structural and functional heterogeneity of striatal interneuron populations." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:cfa09ed5-63be-40b4-a974-0f0f0c273656.

Full text
Abstract:
The striatum is the largest nucleus of the basal ganglia, and acts as a point of convergence for thalamic, cortical and midbrain inputs. It is involved in both motor and associative forms of learning, and is composed of spiny projection neurons (SPNs) whose output along the so-called "direct pathway" and "indirect pathway" is modified by the activity of diverse sets of interneurons. Four "classical" or major classes of striatal interneuron can be identified according to the selective expression of the molecular markers parvalbumin (PV), calretinin (CR), nitric oxide synthase (NOS) or choline acetyltransferase (ChAT). Although the interneurons within a class are generally considered to be homogeneous in form and function, there is emerging evidence that some classes encompass multiple types of neuron, and that the heterogeneity in striatal interneurons extends beyond these four classes. Defining the extent of interneuron heterogeneity is important for understanding how the striatum processes distinct, topographically-organized inputs from the cortex and thalamus in order to govern a wide range of behaviors. To address these issues, a combination of immunofluorescence microscopy and stereological cell counting approaches was used in striatal tissue from rat, mouse and non-human primate. This was supplemented by in vivo recording and juxtacellular labelling of single neurons in rat. A first set of experiments showed that secretagogin (Scgn), a calcium-binding protein, is expressed by a large number of interneurons in the dorsal striatum of rat and primate, but not in the mouse. In all species tested, secretagogin was expressed by a subset of PV+ interneurons and a subset of CR+ interneurons in the dorsal striatum, but also labelled a group of interneurons that did not express any of the classical markers of striatal interneurons. A second set of experiments in the rat demonstrated that the selective co-expression of Scgn by PV+ interneurons delineates two topographically-, physiologically- and morphologically-distinct cell populations. These topographical differences in distribution were largely conserved in the primate caudate/putamen. In rats, PV+/Scgn+ and PV+/Scgn- interneurons differed significantly in their firing rates, firing patterns and phase-locking to cortical oscillations. The axons of PV+/Scgn+ interneurons were more likely to form appositions with the somata of direct pathway SPNs than indirect pathway SPNs, whereas the opposite was true for the axons of PV+/Scgn- interneurons. These two populations of GABAergic interneurons provide a potential substrate through which either of the striatal output pathways can be rapidly and selectively inhibited, and in turn mediate the expression of behavioral routines. A third set of experiments showed that CR+ interneurons of the dorsal striatum can be separated into three populations based on their molecular, topographical and morphological properties. Small-sized ("Type 3") CR+ interneurons co-expressed Scgn and were restricted in their distribution towards the rostro-medial poles of the striatum in both rats and primates. In rats, these neurons also expressed the transcription factor SP8, suggesting that they may be newly generated throughout adulthood. Large-sized, ("Type 1") CR+ interneurons did not express Scgn, but could be further distinguished by their expression of the transcription factor Lhx7. Medium-sized ("Type 2") CR+ interneurons did not express Scgn or Lhx7, and had heterogeneous electrophysiological properties in vivo. The expression of Scgn, but not other classical interneuron markers, identified a group of interneurons that were restricted in their distribution towards the ventro-medial aspects of the dorsal striatum. A fourth set of experiments showed that these neurons are also present in the core and the shell of the nucleus accumbens. Unlike the case of dorsal striatum, however, PV+ interneurons and CR+ interneurons of the nucleus accumbens did not co-express Scgn. Moreover, many of the interneuron populations studied had greater densities in the ventral striatum compared to the dorsal striatum, and had quantifiably strong biases in their distribution towards a variety of axes within both the core and the shell of the nucleus accumbens. These data thus highlight some major differences in the constituent elements of the microcircuits of dorsal striatum and nucleus accumbens. In conclusion, these studies have revealed a great deal of molecular, topographical, electrophysiological and structural heterogeneity within the interneuron populations of the striatum. As several of these interneuron populations were not evenly distributed throughout the striatum, this ultimately suggests that the microcircuit of the striatum is specialized according to regions that differ in their cortical, thalamic and dopaminergic inputs.
APA, Harvard, Vancouver, ISO, and other styles
7

Sizemore, Rachel J., and n/a. "Innervation of cholinergic interneurons in the striatum of the rat." University of Otago. Department of Anatomy & Structural Biology, 2009. http://adt.otago.ac.nz./public/adt-NZDU20090915.155925.

Full text
Abstract:
Cholinergic interneurons are relatively rare neurons in the rat striatum. These sparsely distributed neurons display a synchronous pause in their tonic firing pattern during reward-related learning. It has been hypothesised that a specialised fast-conducting crossed-corticostriatal pathway is involved in synchronising the pause in tonic firing of these interneurons. This study aimed to detail the innervation of cholinergic interneurons by mapping their proximal and distal inputs and to describe the innervation of the crossed-corticostriatal pathway in male Wistar rats. In vivo electrophysiological recording methods were used to label single crossed-corticostriatal neurons but inadequately labeled their axons. Thus, an anterograde neuronal tracing study was conducted. Biotinylated dextran amine (BDA; 1.2 [mu]l) was pressure-injected into the left cerebral hemisphere. Six days later, the rat was perfused-fixed and the brain sectioned. BDA-labelled axons were traced to both the ipsilateral and contralateral striata. Cholinergic interneurons in the right striatum were double-immunolabelled using an optimised protocol including a polyclonal rabbit anti-m2-muscarinic receptor antibody and a monoclonal goat anti-choline acetyltransferase antibody. All sections were processed for transmission electron microscopy. Serial ultrathin sections were montaged and distal (from non BDA-labelled tissue) and proximal synapses were each mapped separately. A reconstructed distal dendrite from a cholinergic interneuron, located 225 [mu]m from the soma, was analysed. It had an average width of 1 .25[mu]m and 0.726 synapses per [mu]m. This was compared to dendrites in the same tissue and from BDA-labelled tissue. Two dendrites were presumed to be distal profiles of either cholinergic or somatostatin interneurons, while the third was thought to belong to another interneuronal cell type. In terms of surface area, there were less somal synapses compared to those made onto the distal dendrite of the cholinergic interneuron. Somal synapse counts were similar to those reported previously from our laboratory, where symmetric synapses were most common. Crossed-corticostriatal BDA-labelled axons were found to course across proximal dendrites and somas of immunolabelled cholinergic interneurons. Varicosities from these axons were found in close proximity to proximal dendrites and somas of cholinergic interneurons. Of all cholinergic interneurons in an adjacent section, 77% showed closely associated proximal varicosities. Of these, 76% of varicosities were associated with the soma, 11% to proximal dendrites and 13% to both locations. Twenty-nine BDA-labeled axons were analysed using transmission electron microscopy. Most were observed making asymmetric synaptic contact with unlabelled spines. In two cases spines were traced to medium spiny projection neurons. Two axon segments were seen touching the proximal regions of separate cholinergic interneurons. At these contact sites interrupted membrane thickenings were observed. It is proposed here that synapses may form at these sites during reward-related learning. However labelling of the contact sites with a postsynaptic marker would be necessary to confirm their synaptic nature. The current study has gathered information about the distal and proximal innervation patterns of these neurons and described the termination pattern of the crossed-corticostriatal pathway in relation to these neurons for the first time. These findings support the crossed-corticostriatal pathway as one possible anatomical substrate for synchronising the pause response on both sides of the brain.
APA, Harvard, Vancouver, ISO, and other styles
8

Kaneko, Satoshi. "Synaptic Integration Mediated by Striatal Cholinergic Interneurons in Basal Ganglia Function." Kyoto University, 2000. http://hdl.handle.net/2433/151448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gazan, Adeline. "Rôle des interneurones somatostatine dans la physiologie striatale :une approche morphologique, électrophysiologique et comportementale." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/283380/4/these.pdf.

Full text
Abstract:
Le système des noyaux de la base possède un rôle essentiel dans de nombreuses fonctions telles que le contrôle et l’apprentissage moteur ainsi que les processus motivationnels et cognitifs. Le striatum constitue la principale structure d’entrée de ce système et peut être subdivisé en une région dorsale, impliquée dans cet apprentissage et ce contrôle moteur, et une partie ventrale, impliquée dans le système de la récompense et donc les processus motivationnels. Le striatum est composé de deux principales catégories de neurones :les neurones épineux de projection (ou « medium-sized spiny neurons », MSN) qui composent la majorité de la structure, et des interneurones. Les interneurones du striatum participent à la modulation de l’activité des neurones épineux, selon un modus operandi propre à chaque population. Les interneurones exprimant la somatostatine, le neuropeptide Y (NPY) et l’enzyme de synthèse de l’oxyde nitrique (nNOS) constituent l’une de ces populations d’interneurones et n’a encore été que brièvement caractérisée d’un point de vue fonctionnel. Notre travail de thèse s’est donc focalisé sur l’étude de la fonction des interneurones somatostatine du striatum par une approche basée sur la perte de fonction. Cette étude fonctionnelle a été réalisée à l’aide d’un modèle de souris ayant subi une ablation spécifique des interneurones somatostatine dans le striatum. Trois principaux types d’analyses ont été réalisés. La première partie du travail s’est intéressée aux fonctions de ces interneurones à l’échelle cellulaire et, plus particulièrement à l’effet de la perte de ces interneurones sur l’activité électrique des MSNs. Nous avons ainsi observé que l’ablation des interneurones somatostatine induit une dépolarisation du potentiel membranaire de repos des MSNs et une augmentation de leur excitabilité, suggérant que de par les différents neurotransmetteurs que ces interneurones libèrent, ceux-ci participent au contrôle de leurs propriétés électrophysiologiques. Le second chapitre, toujours à l’échelle cellulaire et dans ce même contexte de connexion interneurone-MSN, a visé à étudier l’effet de la perte des interneurones somatostatine du striatum sur la morphologie des neurones de projection et ce, au moyen d’une reconstruction 3D. Celle-ci a mis en évidence que les MSNs présentent une réduction de leur densité d’épines dendritiques dans la portion distale, pouvant être le résultat d’un mécanisme d’homéostasie synaptique, alors que l’arborisation dendritique-même n’est pas modifiée. Finalement, la dernière partie a considéré le rôle des interneurones à une échelle systémique, en étudiant l’effet de l’ablation sur le comportement de la souris. Nous avons observé que l’ablation des interneurones somatostatine striataux n’altère pas le comportement moteur, le comportement nociceptif ou les comportements modélisant l’anxiété ou la dépression mais résulte en une augmentation de l’hyperlocomotion induite par la cocaïne. Il s’est également avéré que le rôle des interneurones somatostatine du striatum dans la réponse à la cocaïne se limite exclusivement à l’aspect locomoteur de la cocaïne et non à l’aspect motivationnel, comme montré par un test de préférence de place conditionné. Des analyses d’expression de différents marqueurs dopaminergiques ont, de plus, permis de suggérer que le phénotype hyperlocomoteur observé impliquerait une augmentation de l’expression du transporteur de la dopamine. Enfin, une étude électrophysiologique et morphologique des MSNs, chez des souris dépourvues d’interneurones somatostatine dans le striatum et sensibilisées à la cocaïne, a permis de mettre en évidence une occlusion des effets de la cocaïne sur les propriétés membranaires passives et l’excitabilité des MSNs. De plus, l’addition de dopamine au milieu extracellulaire induit une augmentation de l’excitabilité des MSNs des souris ayant subi une ablation des interneurones somatostatine striataux, compatible avec l’expression accrue de transporteur de la dopamine. D’autre part, l’étude morphologique a mis en évidence un effet de la sensibilisation à la cocaïne sur la densité des épines proximales des MSNs des souris dépourvues d’interneurones somatostatine.En conclusion, ce travail de thèse a permis de fournir, à l’aide d’un modèle d’ablation spécifique, des données substantielles quant au rôle des interneurones somatostatine du striatum dans la physiologie striatale et, en particulier leur fonction inhibitrice des MSNs, ainsi que leur rôle dans les comportements impliquant le striatum, dont la réponse induite par la cocaïne.
Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Zhuowei. "Caractérisation of GABAergic neurotransmission within basal ganglia circuit in R6/1 Huntington's disease mouse model." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0046/document.

Full text
Abstract:
Nous avons étudié les récepteurs GABAA dans un modèle de la maladie de Huntington. En combinant des approches biochimiques, moléculaires, électrophysiologiques et de l’imagerie haute résolution, nous avons montré une modification de la neurotransmission GABAergique chez des animaux à des stades pre- et post-symptomatiques. Nos études montrent une diminution de de la neurotransmission GABAergique dans le globus pallidus des souris Huntington qui pourrait conduire à une modification des noyaux de sortie des ganglions de la base et de l’activité motrice. L’ensemble de nos résultats permet de définir le rôle de différents types de récepteurs GABAA dans le cerveau dans des conditions physiologiques et pathologiques
We explored GABAergic neurotransmission in a mouse model of Huntington's disease. Combining molecular, imaging and electrophysiologicaltechniques, we showed changes of GABAergic neurotransmission in presymptomatic and symptomatic R6/1 mice. Our data demonstrated a decreased GABAergic inhibition in the globus pallidus of R6/1 mice, which could result in an alteration of basal ganglia output nuclei and motor activity. Taken together, our results will help to define the contribution of receptor subtypes to inhibitory transmission throughout the brain in physiological and pathophysiological states
APA, Harvard, Vancouver, ISO, and other styles
11

Van, Vulpen E. H. S. "The development of rat striatal cholinergic interneurons, mechanisms important in location and maturation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35352.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Studer, Lorenz. "NGF increases neuritic complexity of cholinergic interneurons in organotypic cultures of neonatal rat striatum /." [S.l.] : [s.n.], 1994. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aliane, Verena. "Ganglions de la base, transmission cholinergique et stimulation électrique profonde dans un modèle expérimental de stéréotypies motrices chez le rat." Aix-Marseille 2, 2009. http://theses.univ-amu.fr.lama.univ-amu.fr/2009AIX22094.pdf.

Full text
Abstract:
Les comportements répétitifs sont associés à des maladies neuropsychiatriques ou neurologiques telles que les syndromes de Gille de la Tourette, les troubles obsessionnels et compultifs ou le "punding" chez les cocaïnomanes et les parkinsoniens traités par de fortes doses de L-DOPA. La physiopathologie de ces comportements répétitifs reste mal comprise. Chez le rat, une injection challenge de cocaïne induit des stéréotypies motrices. A l'aide de ce modèle, les altérations fonctionnelles dans des ganglions de la base en relation avec ces stéréotypies ont été étudiées. Un modèle 3D du cerveau de rat incluant les projections cortico-striatales a tout d'abord été développé afin de préciser les localisations des territoires préfrontaux et sensorimoteur des ganglions de la base conduisant à un déséquilibre entre ces circuits : 1-le transfert des informations corticales au travers des ganglions de la base sont réduites, 2-la libération de dopamine reste élevée pendant toute la durée des stéréotypies alors que la cinétique de l'inhibition de la libération de l'acétylcholine suit en miroir celle des stéréotypies, 3-montrant le rôle clé de la transmission cholinergique dans l'arrêt des stéréotypies motrices, son augmentation ou sa réduction arrête ou prolonge la durée des stéréotypies. Enfin, une injection périphérique de raclopride ou une stimulation électrique à haute fréquence du noyau subthalamus arrête rapidement les stéréotypies motrices et rétablit les altérations induites par la cocaïne dans les ganglions de la base
Motor stereotypy is a key symptom of various disorders such as Tourette’s syndrome and Obsessive Compulsive Disorder. Administration of neuroleptics as well as cholinesterase inhibitors is effective in treating these symptoms. However, the role of cholinergic transmission in the induction or arrest of motor stereotypy remains unknown. Previously, we showed in a well-established model of cocaine-induced motor stereotypy that strong motor stereotypy was linked to alterations in the préfronto-basal ganglia circuits. Indeed, in the medial prefrontal territory of the dorsal striatum, increased dopamine release was accompanied by decreased acetylcholine release. Here, we analyzed the NMDA-evoked release of dopamine and acetylcholine during decreasing intensity leading to the arrest of motor stereotypy. Furthermore, we studied in various pharmacological situations targeting the cholinergic system (intraperitoneal and local injection in dorsal striatum of raclopride and scopolamine) the role of cholinergic transmission in the arrest of motor stereotypy. The decrease of acetylcholine release followed the kinetics of motor stereotypy. Furthermore, a pharmacological situation restoring acetylcholine release (raclopride, DA D2 antagonist) provoked the arrest of strong motor stereotypy. In contrast, a pharmacological situation that blocked the postsynaptic effects of acetylcholine (scopolamine, muscarinic antagonist) or induced degeneration of cholinergic interneurons (AF64A) in the medial prefrontal territory of the dorsal striatum robustly prolonged the duration of strong motor stereotypy. Thus, we propose that restoration of cholinergic transmission in the medial prefrontal territory of the dorsal striatum plays a key role in the arrest of motor stereotypy
APA, Harvard, Vancouver, ISO, and other styles
14

Mamaligas, Aphroditi A. "Cholinergic Interneuron Mediated Activation of G-Protein Coupled Receptors in the Dorsal Striatum." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case152839454888959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Massouh, Mireille. "Les interneurones géants exprimant la calrétinine dans le striatum humain : leur devenir dans la maladie de Huntington." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24301/24301.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mallet, Nicolas. "Fonction des interneurones GABAergiques rapides dans le striatum : étude électrophysiologique invivo chez lz rat normal et hémiparkinsonien." Bordeaux 2, 2005. http://www.theses.fr/2005BOR21227.

Full text
Abstract:
Le striatum est la principale structure d'entrée des ganglions de la base. Il reçoit deux afférences majeures, l'une glutamatergique provenant du cortex et l'autre dopaminergique. Il est formé à 95 % de neurones de projection striatonigraux (SN) ou striatopallidaux (SP), les autres étant des interneurones cholinergiques ou GABAergiques. Dans le striatum latéral, les interneurones GAGAergiques les plus nombreux sont des interneurones rapides (IR) qui expriment la parvalbumine. Nous avons enregistré les IR dans le striatum du rat anesthésié à l'uréthane et les avons identifiés par la brièveté de leur potentiel d'action et leur aptitude à générer des bouffées. Nous avons montré que les IR inhibent les neurones de projection et restreignent la fenêtre temporelle de leur réponse à une stimulation corticale. La maladie de Parkinson est due à la dégénérescence des neurones dopaminergiques. Les modèles de cette maladie postulent que la lésion dopaminergique inhibe les neurones SN et active les SP. Nous avons enregistré et identifié ces neurones chez le rat rendu hemiparkinsonien par une injection de 6-hydroxydopamine. Chez les rats témoins, les neurones SP et SN présentent une sensibilité identique à la stimulation corticale. Chez les rats lésés, la sensibilité des neurones SN est diminuée alors que celle des SP est augmentée. Nous avons enregistré, et identifié par stimulation antidromique, des neurones corticostriés qui innervent préférentiellement les neurones SN. L'activité spontanée de ces neurones corticaux est diminuée de 51 % par la lésion. Ainsi le déséquilibre striatal a, en partie, une origine corticale. La lésion n'altère pas la sensibilité des IR à la stimulation corticale. Après lésion, l'inhibition des neurones SN par les IR est renforcée et celle des SP est atténuée. Ainsi, les IR ne sont pas à l'origine du déséquilibre striatal, mais ils l'accentuent. Nous avons donc mis en évidence deux mécanismes non dopaminergiques qui expliquent la pathologie striatale.
APA, Harvard, Vancouver, ISO, and other styles
17

Hjorth, Johannes. "Computer Modelling of Neuronal Interactions in the Striatum." Doctoral thesis, KTH, Beräkningsbiologi, CB, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10523.

Full text
Abstract:
Large parts of the cortex and the thalamus project into the striatum,which serves as the input stage of the basal ganglia. Information isintegrated in the striatal neural network and then passed on, via themedium spiny (MS) projection neurons, to the output stages of thebasal ganglia. In addition to the MS neurons there are also severaltypes of interneurons in the striatum, such as the fast spiking (FS)interneurons. I focused my research on the FS neurons, which formstrong inhibitory synapses onto the MS neurons. These striatal FSneurons are sparsely connected by electrical synapses (gap junctions),which are commonly presumed to synchronise their activity.Computational modelling with the GENESIS simulator was used toinvestigate the effect of gap junctions on a network of synapticallydriven striatal FS neurons. The simulations predicted a reduction infiring frequency dependent on the correlation between synaptic inputsto the neighbouring neurons, but only a slight synchronisation. Thegap junction effects on modelled FS neurons showing sub-thresholdoscillations and stuttering behaviour confirm these results andfurther indicate that hyperpolarising inputs might regulate the onsetof stuttering.The interactions between MS and FS neurons were investigated byincluding a computer model of the MS neuron. The hypothesis was thatdistal GABAergic input would lower the amplitude of back propagatingaction potentials, thereby reducing the calcium influx in thedendrites. The model verified this and further predicted that proximalGABAergic input controls spike timing, but not the amplitude ofdendritic calcium influx after initiation.Connecting models of neurons written in different simulators intonetworks raised technical problems which were resolved by integratingthe simulators within the MUSIC framework. This thesis discusses theissues encountered by using this implementation and gives instructionsfor modifying MOOSE scripts to use MUSIC and provides guidelines forachieving compatibility between MUSIC and other simulators.This work sheds light on the interactions between striatal FS and MSneurons. The quantitative results presented could be used to developa large scale striatal network model in the future, which would beapplicable to both the healthy and pathological striatum.
QC 20100720
APA, Harvard, Vancouver, ISO, and other styles
18

泰岳, 中野, and Yasutake Nakano. "Parvalbumin-producing striatal interneurons received excitatory inputs onto proximal dendrites from motor thalamus in male mice." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13060318/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13060318/?lang=0.

Full text
Abstract:
本研究は、線条体パルブアルブミン発現ニューロン(PVニューロン)が受け取るグルタミン酸作動性軸索投射を順行性ウィルストレーサーを用い形態学的に調べた。その結果、運動皮質および視床腹側部からのグルタミン酸作動性軸索入力はいずれもPVニューロン樹状突起の広範囲に投射を行っているものの、視床腹側部の投射のみが細胞体から20µm程度の近位樹状突起に高密度な分布を示すことが明らかとなった。
Using bacterial artificial chromosome transgenic mice expressing somatodendritic membrane–targeted green fluorescent protein in striatal parvalbumin (PV) interneurons, we demonstrate that glutamatergic inputs originating from the ventral anterior/ventral lateral motor thalamus preferentially contact on proximal dendrites, while inputs from motor cortex are uniformly distributed on PV neurons. These results were confirmed using a combination of vesicular glutamate transporter immunoreactions. Collectively, these findings suggest that PV neurons produce fast and reliable inhibition of medium spiny neurons in response to thalamic inputs. In contrast, excitatory inputs from motor cortices modulate PV dendrite excitability, possibly in concert with other glutamatergic, GABAergic, and dopaminergic inputs.
博士(理学)
Doctor of Philosophy in Science
同志社大学
Doshisha University
APA, Harvard, Vancouver, ISO, and other styles
19

Hjorth, Johannes. "Information processing in the Striatum : a computational study." Licentiate thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mansouri, Guilani Nina. "Modulation of amphetamine-induced behaviors in mice by the atypical vesicular glutamate transporter type 3 (VGLUT3)." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066538/document.

Full text
Abstract:
Toutes les drogues entrainent une libération accrue de dopamine dans une structure cérébrale nommée striatum. Cette structure est impliquée à la fois dans le contrôle moteur et dans les comportements motivés par les récompenses. Localement, les neurones striataux sont modulés par des interneurones cholinergiques (CINs). Les CINs ont pour particularité d’exprimer le transporteur vésiculaire du glutamate de type 3 (VGLUT3) en plus de celui de l’acétylcholine (VAChT). Par conséquent, ces interneurones sont capables de libérer du glutamate et de l’acétylcholine. Dans le striatum, VGLUT3 est également retrouvé dans certaines fibres sérotoninergiques. Chez des patients toxicomanes, le taux de mutation du gène codant VGLUT3 est augmenté. De plus, les souris qui n’expriment pas VGLUT3 (VGLUT3—/—) sont pré-sensibilisées à la cocaïne, et présentent des changements fonctionnels dans le striatum. VGLUT3 apparaît donc comme un régulateur de l’abus de drogue. Mes travaux de recherche ont consisté à caractériser l’effet d’un autre psychostimulant, l’amphétamine (AMPH), chez les souris VGLUT3—/—. Cela a permis de montrer que ces souris présentent une sensibilisation à l’AMPH, plus forte que les contrôles. A forte dose, les psychostimulants entrainent l’apparition de mouvements anormaux appelés stéréotypies. Nous avons observé que les souris VGLUT3—/— sont plus résistantes aux stéréotypies induites par l’AMPH. Une étude plus approfondie a montré que le glutamate libéré par les CINs semble intervenir dans ces stéréotypies. Ces résultats révèlent un rôle jusque-là insoupçonné du glutamate libéré par les CINs dans les mouvements anormaux, qui sont la signature de diverses pathologies
All drugs of abuse yield a greater release of dopamine in a cerebral structure called striatum. This structure is involved in motor control, but also in behaviors motivated by reward. Locally, striatal neurons are modulated by cholinergic interneurons (CINs). CINs have the particularity to express the vesicular glutamate transporter type 3 (VGLUT3) on top of the one for acetylcholine (VAChT). Therefore, these interneurons have the ability to release both glutamate and acetylcholine. In the striatum, VGLUT3 is also found in some serotonergic fibers. A genetic study revealed that the mutation rate of the gene encoding VGLUT3 is increased in human addicts. Moreover, mice lacking VGLUT3 (VGLUT3—/—) are pre-sensitized to cocaine, and present functional alterations in the striatum. Thus, VGLUT3 appears as a regulator of drug abuse. My work consisted in characterizing the effects of another psychostimulant, amphetamine (AMPH), on VGLUT3—/— mice. This study revealed that VGLUT3—/— mice have a sensitization to AMPH, to a higher extent than control mice. At high dose, psychostimulants produce abnormal movements called stereotypies. We observed that VGLUT3—/— mice are more resistant to AMPH-induced stereotypies. Further investigation showed that the glutamate released by CINs seems involved in these stereotypies, but not the serotonergic source. Our result reveals a hitherto unsuspected role of the glutamate released by CINs in abnormal movements that are the hallmark of several pathologies
APA, Harvard, Vancouver, ISO, and other styles
21

Deffains, Marc. "Rôle du striatum sensorimoteur dans le contrôle des séquences motrices automatisées chez le primate." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10087.

Full text
Abstract:
Le striatum, tout particulièrement sa région sensorimotrice, est connu pour jouer un rôle crucial dans l’expression de routines motrices qui nécessitent la réalisation d’une suite de mouvements. Dans ce travail, nous avons étudié la contribution respective des neurones efférents et des interneurones cholinergiques du striatum dans les processus qui sous - tendent l’expression de séquences motrices automatisées, en enregistrant l’activité unitaire de ces deux populations neuronales chez des singes entraînés à effectuer des mouvements d’atteinte manuelle de cibles. Par cette approche, nous avons examiné les modifications d’activité de ces neurones lors d’un changement des conditions de performance durant la réalisation de la séquence de mouvements. Ainsi en manipulant l’ordre habituel ou la structure temporelle de la séquence, nous avons montré, au sein du striatum sensorimoteur, que les neurones efférents et les interneurones cholinergiques participent au traitement des informations spatiales et temporelles qui caractérisent une séquence motrice automatisée. Par ailleurs, nous avons montré que ces deux populations neuronales sont différentiellement activées lorsque l’ordre de la séquence est visuellement spécifié ou déterminé sur la base d’informations mémorisées. Ces résultats apportent des informations essentielles pour mieux comprendre les mécanismes neuronaux impliqués, au niveau du striatum sensorimoteur, dans le contrôle des séquences motrices automatisées
It is well known that the striatum, especially its sensorimotor part, is involved in the expression of motor skills which require the production of a sequence of movements. In this study, we addressed the respective contribution of efferent neurons and cholinergic interneurons of the striatum in the processes underlying the expression of motor sequences, by recording single unit activity of these two neuronal populations in monkeys performing sequential arm reaching movements. By this experimental approach, we examined activity modulations of these neurons during a change in the conditions of performance of the motor sequence. Thus, by changing the habitual order or the temporal structure of the sequence, we underlined that within sensorimotor striatum, efferent neurons and cholinergic interneurons are involved in the processing of spatial and temporal information which characterize an automatic motor sequence. In addition, we reported differential activations of these two neuronal populations depending on whether the serial order of the sequence of movements is visually cued or based on internally stored information. Taken together, these results provide essential information in order to better understand the neuronal mechanisms involved, within the sensorimotor part of striatum, in the control of the automatic motor sequences
APA, Harvard, Vancouver, ISO, and other styles
22

Prüß, Harald. "Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function." Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2004. http://dx.doi.org/10.18452/15031.

Full text
Abstract:
Der Morbus Parkinson ist die häufigste Erkrankung der Basalganglien und wird durch einen Abbau der dopaminergen Neurone in der Substantia nigra des Mittelhirns verursacht. Um Wege zu finden, die Nebenwirkungen bisheriger Therapien dieser Erkrankung zu vermeiden, sollten neue Angriffspunkte für pharmakologische Interventionen gesucht werden. Prinzipiell ist dabei jeder Schritt einer Signaltransduktions-Kaskade zu prüfen. Dazu gehören präsynaptische Transmitterfreisetzung, G-Protein-gesteuerte Effektormechanismen oder Veränderungen prä- und postsynaptischer Potentiale, wie sie durch ein bestimmtes lokales Ionenkanalmuster festgelegt werden. Aufgrund ihrer enormen molekularen Vielfalt bei gleichzeitig weiter, aber spezifischer Verbreitung, stellen Kaliumkanäle interessante Angriffspunkte für neue therapeutische Strategien dar. Die vorliegende Arbeit untersucht die zelluläre und subzelluläre Verteilung aller Mitglieder der Kir2-Familie, einer Gruppe von Proteinen, die einwärts-gleichrichtende Kaliumkanäle bildet. Zu diesem Zweck wurden polyklonale, monospezifische, affinitätsgereinigte Antikörper gegen den wenig konservierten carboxyterminalen Anteil der Kir2.1-, Kir2.2-, Kir2.3- und Kir2.4-Proteine hergestellt. Alle Untereinheiten der Kir2-Familie wurden an den Somata und Dendriten der meisten striatalen Neurone nachgewiesen. Zwei dieser Kanäle zeigten jedoch ein inhomogenes Verteilungsmuster: Das "patch"-Kompartiment des Striatums wurde von der Expression des Kir2.3-Kanals ausgespart, und das Kir2.4-Protein wurde am stärksten auf den tonisch aktiven, cholinergen striatalen Interneuronen exprimiert. Diese beiden Strukturen stellen die Schlüsselstellen für die Kontrolle und Regulation der dopaminergen und cholinergen Transmission im Striatum dar, weswegen ihnen eine zentrale Rolle für die efferenten Projektionen der Basalganglien zukommt. Die nachgewiesene heterogene Lokalisation der Kir2.3- und Kir2.4-Untereinheit an diesen strategisch relevanten Strukturen macht diese Kanäle zu viel versprechenden Angriffspunkten für zukünftige Pharmakotherapien.
Parkinson’s disease is the most frequent movement disorder caused by loss of dopaminergic neurons in the midbrain. Intentions to avoid side effects of conventional therapy should aim to identify additional targets for potential pharmacological intervention. In principle, every step of a signal transduction cascade, such as presynaptic transmitter release, type and occupation of postsynaptic receptors, G protein-mediated effector mechanisms, and the alterations of pre- or postsynaptic potentials as determined by the local ion channel composition, have to be considered. Due to their diversity and their widespread but distinct localizations, potassium channels represent interesting candidates for new therapeutic strategies. As a first step, the present report aimed to study the cellular and subcellular distribution of the individual members of the Kir2 family in the striatum, a group of proteins forming inwardly rectifying potassium channels. For this purpose polyclonal, monospecific, affinity purified antibodies against the less conserved carboxyterminal sequences from the Kir2.1, Kir2.2, Kir2.3, and Kir2.4 proteins were prepared. All subunits of the Kir2 family were detected on somata and dendrites of most striatal neurons. However, the distribution of two of them was not homogeneous. Striatal patch areas were largely devoid of the Kir2.3 protein, and the Kir2.4 subunit was most prominently expressed on the tonically active, giant cholinergic interneurons of the striatum. These two structures are among the key players in regulating dopaminergic and cholinergic neurotransmission within the striatum, and therefore are of major importance for the output of the basal ganglia. The heterogeneous localization of the Kir2.3 and the Kir2.4 subunits with respect to these strategic structures pinpoints these channel proteins as promising targets for future pharmacological efforts.
APA, Harvard, Vancouver, ISO, and other styles
23

Rudkin, Teresa. "Organization of the thalamic projection onto parvalbumin- immunoreactive striatal interneurons : a study of the normal topography in the rat and its alteration following neonatal decortication." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0001/MQ44264.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bode, Christoph. "Postnatale Entwicklung der striatalen GABAergen Interneurone im dtsz Hamster als Dystoniemodell: Untersuchungen des Homöodomänproteins Nkx 2.1, des Kalium-Chlorid-Kotransporters KCC2, der Carboanhydrase CAH7 und des Wachstumsfaktors BDNF." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-225674.

Full text
Abstract:
Einleitung: Bei der Dystonie handelt es sich um eine Erkrankung des zentralen Nervensystems. Sie ist charakterisiert durch ungewollte, dauerhafte oder wiederkehrende Muskelkontraktionen, die zu abnormalen Bewegungsabläufen und Haltungen führen. Sie ist die dritthäufigste Bewe-gungsstörung beim Menschen. Bisherige Befunde beim Menschen und Untersuchungen an Tier-modellen weisen u.a. auf eine besondere Bedeutung der Basalganglien-Thalamus-Schleife hin, die an der Kontrolle von willkürlichen und unwillkürlichen Bewegungen beteiligt ist. So konnten bei unterschiedlichen Tiermodellen Veränderungen im Striatum (STR), der Eingangsstruktur der Basalganglien, nachgewiesen werden. Beim dtsz Hamster, einem gut etablierten Tiermodell für die paroxysmale Dystonie, konnte neben vielen striatalen Veränderungen eine Reduktion der GABAergen Interneurone (IN), wie Parvalbumin-positive (PV+) IN, zum Zeitpunkt der maximalen Ausprägung der Dystonie gezeigt werden. Ziele der Untersuchung: Die Gründe für den Mangel an striatalen GABAergen IN bei der dtsz Hamstermutante sollten weiter untersucht werden, indem der Frage nachzugehen war, ob beim dtsz Hamster eine Migrations- oder Ausreifungsstörung der IN vorliegt. Dazu wurde das Homöodomänprotein Nkx 2.1, als Marker für aus dem medialen Ganglienhügel eingewanderte IN, im STR der dtsz Hamstermutante untersucht. Die Expression des Brain-derived neurotrophic factors (BDNF), des Kalium-Chlorid-Kotransporters 2 (KCC2) und die zytosolische Carboanhydrase vom Isotyp 7 (CAH7) wurden als Indikatoren für die Ausreifung von GABAergen IN herangezogen. Tiere, Material und Methoden: Die Untersuchungen wurden vergleichend an dtsz Hamstern und Kontrollhamstern durchgeführt. Beim dtsz Hamster zeigt die Dystonie einen altersabhängigen Verlauf (Beginn: ca. 16. Lebenstag (LT); Maximum: 30.-42. LT; Remission: 70. LT). Deshalb wurden als Untersuchungszeitpunkte der 18. LT und der 33. LT gewählt. Um die Migration der striatalen IN zu untersuchen, wurde im STR bei 33 Tage alten Hamsterns die Dichte der immun-histochemisch markierten Nkx 2.1-positiven Zellen stereologisch ermittelt. Der mRNA-Gehalt wurde relativ mittels „quantitativer Echtzeit-PCR“ (qPCR) bestimmt. Zusätzlich wurde die mRNA-Expression von Nkx 2.1 bei 18 Tage alten Tieren untersucht. Von KCC2 und CAH7 wurde die mRNA mittels qPCR bei 18 und 33 Tage alten Hamstern im STR untersucht. Die Expression von BDNF wurde mittels ELISA-System im Kortex (Cx), STR und im restlichen Gehirngewebe („R“) bei 33 und 18 Tage alten Tieren bestimmt. Der BDNF-mRNA Gehalt wurde im Cx (18. und 33. LT) und im STR (33. LT) untersucht. Des Weiteren sollte BDNF bei 33 Tage alten Hamstern mittels immunhistochemischer Markierung im Cx und STR untersucht werden. Die Untersuchung von BDNF im Cx ist deshalb wichtig, weil BDNF vom Cx in das STR trans-portiert wird. Zusätzlich wurde Parvalbumin (PV) zusammen mit Nkx 2.1 immunhistochemisch markiert und die mRNA-Expression von PV bei 18 und 33 Tage alten Tieren bestimmt. Ergebnisse: Für Nkx 2.1 konnte kein Unterschied in der Zelldichte zwischen dtsz- und Kontroll-hamstern gefunden werden. Ebenfalls gab es weder bei 18 noch bei 33 Tage alten Tieren einen Unterschied in der Nkx 2.1-mRNA-Expression. Unterschiede in der mRNA-Expression von KCC2 und CAH7 im STR (18. und 33. LT) lagen auch nicht vor. Die Expression der PV-mRNA im STR bei 33 Tage alten Tieren war jedoch erwartungsgemäß vermindert. Auf mRNA-Ebene konnte im Cx für BDNF kein Unterschied zwischen dtsz- und Kontrolltiergruppe gefunden wer-den. Bei beiden Tiergruppen wurde mittels ELISA im STR mehr BDNF nachgewiesen als im Cx und im R (18. und 33. LT) nachweisbar. Entgegen der Hypothese war nach Analyse der Daten mittels Zwei-Wege ANOVA eine geringe Erhöhung der BDNF-Expression im Cx und STR bei 33 Tage alten dtsz Hamstern nachweisbar. Dies lag daran, dass die BDNF-Expression nur bei den Kontrolltieren am 33. LT im Vergleich zum 18. LT herunterreguliert war. Die Ergebnisse der BDNF-Immunhistologie waren in Hinblick auf die Spezifität zweifelhaft. Schlussfolgerung: Die Nkx 2.1 Daten lassen auf eine ungestörte Migration striataler IN bei der dtsz Mutante schließen. Wahrscheinlich ist eine Ausreifungsstörung für den Mangel an GABAer-gen IN verantwortlich. Die Ergebnisse von KCC2 und CAH7 zeigen, dass keine generelle Ausreifungsstörung von GABAergen Neuronen vorliegt, wobei dies für kleinere Subpopulationen nicht ausgeschlossen werden kann. Entgegen der Arbeitshypothese konnte keine Verringerung sondern eine leichte Erhöhung von BDNF zum 33. LT bei der dtsz Hamstermutante festgestellt werden. Eine mögliche Erklärung könnte sein, dass BDNF auf Grund der verzögert einsetzenden Entwicklung der IN nicht herunterreguliert wird. Die Gründe für diese Erhöhung wie auch weitere Marker für die neuronale Ausreifung werden durch weiterführende Studien untersucht.
APA, Harvard, Vancouver, ISO, and other styles
25

Massouh, Mireille. "Les interneurones géants exprimant la calrétinine dans le striatum humain : leur devenir dans la maladie de Huntington /." 2007. http://www.theses.ulaval.ca/2007/24301/24301.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Johannes, Silvia. "NADPH-Diaphorase-positive putaminale Interneurone : Morphologie und Stereologie bei Gesunden und Schizophrenen." Doctoral thesis, 2006. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-26158.

Full text
Abstract:
Die NADPHd-Färbung stellt bekanntermaßen Neurone dar, die die neuronale NOS exprimieren. Die Anfärbung der Neurone ist in ihrer Qualität dabei mit Golgi-basierten Versilberungstechniken vergleichbar. Aufgrund dieser Eigenschaften ermöglicht diese Methode morphologische und funktionelle Untersuchungen. Somit ist sie geradezu zur Bearbeitung neuropathologischer Fragestellungen prädestiniert. Im Putamen werden durch diese Technik vorwiegend Interneurone angefärbt. Anhand morphologischer Kriterien wurden die nitrinergen Neurone klassifiziert. Im menschlichen Putamen konnten dabei 12 Neuronentypen (NADPHd I bis XII) unterschieden werden, die nur zum Teil in bereits bestehende Klassifikationssysteme eingeordnet werden konnten. Ausgehend von dieser Klassifikation ist es möglich, in vergleichenden Studien Veränderungen NADPHd-positiver Neurone im Rahmen neurodegenerativer Erkrankungen festzustellen. Im Falle der vorliegenden Arbeit wurde dabei das Putamen schizophrener Patienten untersucht. Aufgrund der geringen Anzahl von drei untersuchten schizophrenen Gehirnen ließen sich nur vorläufige Aussagen in Bezug auf Unterschiede NADPHd-positiver Neurone im Putamen Gesunder und Schizophrener treffen. Solche Unterschiede wurden in der Morphologie dieser Neurone gefunden, aber auch in deren Dichte: Im Putamen Schizophrener lag die Dichte NADPHd-positiver Neurone signifikant unter der bei der gesunden Kontrollgruppe ermittelten Dichte. Neben diesem numerischen Unterschied konnten auch morphologisch auffällige Neurone gefunden werden, die in der gesunden Kontrollgruppe nicht vorhanden waren. Sowohl im Claustrum als auch in der das Claustrum umgebenden weißen Substanz der Capsulae externa et extrema konnten NADPHd-positive Neurone nachgewiesen werden. Die NADPHd-positiven Neurone des Claustrums ließen sich zum Teil nach bereits bestehenden Einteilungen klassifizieren. In den äußeren Kapseln lagen sie zumeist parallel zur Richtung der Fasermassen angeordnet und zählten zu den interstitiellen Zellen der weißen Substanz
The NADPHd-staining is known to stain selectively neurons expressing the neuronal NOS. The staining results are comparable to Golgi impregnation techniques because not only the cell soma is stained but also the dendrites. Thus, morphological and functional aspects can be examined using that techniqe. This method was used to stain, characterize and classify nNOS-positive neurons of the human putamen. Predominantly, interneurons were stained. They displayed a homogenous staining of the cell soma and the dendrites showing clear morphological differences. The interneurons could be classified into 12 different types (NADPHd I to XII) which only partially corresponded to previously described neuron types. Based on this classification system of a healthy brain, it is possible to find abnormalities of NADPHd-positive interneurons in neurodegenerative diseases. In this study, the putamen of three schizophrenic subjects was examined. Differences could not only be found for the morphology of NADPHd-positive interneurons but also for their frequency: The number of NADPHd-positive interneurons was significantly reduced in the putamen of schizophrenics. However, since only three brains of schizophrenics were examined these results can only be judged preleminary. In the claustrum and in the white matter surrounding the claustrum NADPHd-positive neurons were found as well. Regarding the claustrum, the NADPHd-positive neurons fit partially in previous classification systems. The NADPHd-positive neurons of the external capsules were part of the interstitial cells of the white matter
APA, Harvard, Vancouver, ISO, and other styles
27

Chartove, Julia. "Delta/theta-rhythmically interleaved gamma and beta oscillations in striatum: modeling and data analysis." Thesis, 2020. https://hdl.handle.net/2144/42055.

Full text
Abstract:
Striatal oscillatory activity associated with movement, reward, and decision-making is observed in several interacting frequency bands. Rodent striatal local field potential recordings show dopamine- and reward-dependent transitions between a 'spontaneous' state involving beta (15-30 Hz) and low gamma (40-60 Hz) and a 'dopaminergic' state involving theta (4-8 Hz) and high gamma (60-100 Hz) activity. The mechanisms underlying these rhythmic dynamics and their functional consequences are not well understood. In this thesis, I construct a biophysical model of striatal microcircuits that comprehensively describes the generation and interaction of these rhythms as well as their modulation by dopamine and rhythmic inputs, and test its predictions using human electroencephalography (EEG) data. Chapter 1 describes the striatal model and its dopaminergic modulation. Building on previous work suggesting striatal projection neuron (SPN) networks can generate beta oscillations, I construct a model network of striatal fast-spiking interneurons (FSIs) capable of generating delta/theta (2-6 Hz) and gamma rhythms. This FSI network produces low gamma oscillations under low (simulated) dopaminergic tone, and high gamma activity nested within a delta/theta oscillation under high dopaminergic tone. In a combined model under high dopaminergic tone SPN network beta oscillations are interrupted by delta/theta-periodic bursts of gamma-frequency FSI inhibition. This high dopamine-induced periodic inhibition may enable switching between beta-rhythmic SPN cell assemblies representing motor programs, suggesting that dopamine facilitates movement in part by allowing for rapid, periodic changes in motor program execution. Chapter 2 describes the model's response to square-wave periodic cortical inputs. Comparing models with and without FSIs reveals that the FSI network: (i) prevents the SPN network's generation of phase-locked beta oscillations in response to beta's harmonic frequencies, ensuring fidelity of transmission of cortical beta rhythms; and (ii) limits or entrains SPN activity in response to certain gamma frequency inputs. Chapter 3 describes an analysis of phase-amplitude coupling at cortical electrodes in human EEG data during a reward task. The alternating rhythms predicted by the model appear in response to positive feedback. While the origins of these rhythms remain unclear, if they represent striatal signals, they provide a direct link between human behavior and striatal cellular function.
APA, Harvard, Vancouver, ISO, and other styles
28

Sullivan, Matthew Alexander. "Recurrent inhibitory network among cholinergic inerneurons of the striatum." 2008. http://hdl.handle.net/2152/18650.

Full text
Abstract:
The striatum is the initial input nuclei of the basal ganglia, and it serves as an integral processing center for action selection and sensorimotor learning. Glutamatergic projections from the cortex and thalamus converge with dense dopaminergic axons from the midbrain to provide the primary inputs to the striatum. Striatal output is then relayed to downstream basal ganglia nuclei by GABAergic medium – sized spiny neurons, which comprise at least 95% of the population of neurons in the striatum. The remaining population of local circuit neurons is dedicated to regulating the activity of spiny projection neurons, and although spiny neurons form a weak lateral inhibitory network among themselves via local axon collaterals, feedforward modulation exerts more powerful control over spiny neuron excitability. Of the striatal interneurons, only one class is not GABAergic. These neurons are cholinergic and correspond to the tonically active neurons (TANs) recorded in vivo, which respond to specific environmental stimuli with a transient depression, or pause, of tonic firing. Striatal cholinergic interneurons account for less than 2 % of the striatal neuronal population, yet their axons form an extensive and complex network that permeates the entire striatum and significantly shapes striatal output by acting at numerous targets via varied receptor types. Indeed, the persistent level of ambient striatal acetylcholine as well as changes to that basal acetylcholine level underlie the major mechanisms of cholinergic signaling in the striatum, however regulation of this system by the local striatal microcircuitry is not well understood. This dissertation finds that activation of intrastriatal cholinergic fibers elicits polysynaptic GABAA inhibitory postsynaptic currents (IPSCs) in cholinergic interneurons recorded in brain slices. Excitation of striatal GABAergic neurons via nicotinic acetylcholine receptors (nAChRs) mediates this polysynaptic inhibition in a manner independent of dopamine. Moreover, activation of a single cholinergic interneuron is capable of eliciting polysynaptic GABAA IPSCs onto itself and nearby cholinergic interneurons. These findings provide an important insight into the striatal microcircuitry controlling cholinergic neuron excitability.
text
APA, Harvard, Vancouver, ISO, and other styles
29

Cheng, Ruey-Kuang. "Neural Coding Strategies in Cortico-Striatal Circuits Subserving Interval Timing." Diss., 2010. http://hdl.handle.net/10161/2380.

Full text
Abstract:

Interval timing, defined as timing and time perception in the seconds-to-minutes range, is a higher-order cognitive function that has been shown to be critically dependent upon cortico-striatal circuits in the brain. However, our understanding of how different neuronal subtypes within these circuits cooperate to subserve interval timing remains elusive. The present study was designed to investigate this issue by focusing on the spike waveforms of neurons and their synchronous firing patterns with local field potentials (LFPs) recorded from cortico-striatal circuits while rats were performing two standard interval-timing tasks. Experiment 1 demonstrated that neurons in cortico-striatal circuits can be classified into 4 different clusters based on their distinct spike waveforms and behavioral correlates. These distinct neuronal populations were shown to be differentially involved in timing and reward processing. More importantly, the LFP-spike synchrony data suggested that neurons in 1 particular cluster were putative fast-spiking interneurons (FSIs) in the striatum and these neurons responded to both timing and reward processing. Experiment 2 reported electrophysiological data that were similar with previous findings, but identified a different cluster of striatal neurons - putative tonically-active neurons (TANs), revealed by their distinct spike waveforms and special firing patterns during the acquisition of the task. These firing patterns of FSIs and TANs were in contrast with potential striatal medium-spiny neurons (MSNs) that preferentially responded to temporal processing in the current study. Experiment 3 further investigated the proposal that interval timing is subserved by cortico-striatal circuits by using microstimulation. The findings revealed a stimulation frequency-dependent "stop" or "reset" response pattern in rats receiving microstimulation in either the cortex or the striatum during the performance of the timing task. Taken together, the current findings further support that interval timing is represented in cortico-striatal networks that involve multiple types of interneurons (e.g., FSIs and TANs) functionally connected with the principal projection neurons (i.e., MSNs) in the dorsal striatum. When specific components of these complex networks are electrically stimulated, the ongoing timing processes are temporarily "stopped" or "reset" depending on the properties of the stimulation.


Dissertation
APA, Harvard, Vancouver, ISO, and other styles
30

Le, Trung Ngoc. "Dlx homeobox genes and their role in interneuronal differentiation and migration in the developing forebrain." 2010. http://hdl.handle.net/1993/3968.

Full text
Abstract:
Understanding the specificity of homeobox genes has been hampered by the lack of verified direct transcriptional targets. The Dlx family of homeobox genes is expressed in the ganglionic eminences of the developing forebrain. Dlx1/Dlx2 double knockout (DKO) mice die at birth. Phenotypic analyses demonstrate abnormal development of the basal telencephalon, including defects in neuronal differentiation in the basal ganglia, reduced expression of GABA in the basal telencephalon, and loss of migration of GABAergic inhibitory interneurons to the neocortex. The mechanisms underlying DLX protein regulation of differentiation and migration of GABAergic interneurons are poorly defined. We have successfully applied chromatin immunoprecipitation to identify potential direct transcriptional targets of DLX homeoproteins from embryonic tissues in vivo. Reporter gene assays demonstrated the transcriptional significance of the binding of DLX proteins to different downstream regulatory elements, which were confirmed in vitro by electrophoretic mobility shift assay and site-directed mutagenesis. The functional significance of DLX mediated transcriptional regulation of these targets was further elaborated through several series of loss-of-function assays including gene expression in Dlx1/2 knockout embryonic forebrain tissues, as well as siRNA or Lentiviral mediated shRNA knockdown experiments with primary forebrain cultures. Quantitative analysis of the regulatory effect of Dlx genes on various forebrain markers of differentiation and migration was performed using in situ hybridization, high-performance liquid chromatography coupled with cell counting. Neuronal migration was assessed by forebrain explants and diI labelling of migratory cells from ganglionic eminence to neocortex. We have demonstrated that DLX1 and DLX2 can transcriptionally activate (Gad1, Gad2) or repress (Nrp2) different downstream targets. In the Dlx1/2 DKO, reduction of GABA expression and failure of GABAergic interneurons to migrate to the neocortex is partly due to loss or aberrant expression of these DLX downstream targets. In the triple Dlx1/2; Nrp2KO, partial restoration of tangential migration of GABAergic interneurons from basal ganglia to the neocortex was successfully established signifying the importance of DLX regulation of Semaphorin-Neuropilin signalling during forebrain development.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography