Academic literature on the topic 'Interpolator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interpolator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interpolator"
Liu, Chao, and Hui Wang. "A real-time predictor-modification-evaluation–corrector-modification-evaluation parametric interpolator for numerical control transition curves." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 234, no. 1-2 (June 18, 2019): 95–107. http://dx.doi.org/10.1177/0954405419856951.
Full textShen, Hai Ming, Kun Qi Wang, and Yong You Tian. "Design of Interpolation Algorithm in the Multi-Axis Motion Control System." Advanced Materials Research 411 (November 2011): 259–63. http://dx.doi.org/10.4028/www.scientific.net/amr.411.259.
Full textWANG, HAO, WEI ZHANG, and YANYAN LIU. "NOVEL PIPELINED INTERPOLATOR FOR REED–SOLOMON DECODER BASED ON LOW-COMPLEXITY CHASE DECODING." Journal of Circuits, Systems and Computers 22, no. 10 (December 2013): 1340037. http://dx.doi.org/10.1142/s0218126613400379.
Full textGashnikov, M. V. "Interpolation based on context modeling for hierarchical compression of multidimensional signals." Computer Optics 42, no. 3 (July 25, 2018): 468–75. http://dx.doi.org/10.18287/2412-6179-2018-42-3-468-475.
Full textGashnikov, M. V. "Parameterized interpolation for fusion of multidimensional signals of various resolutions." Computer Optics 44, no. 3 (June 2020): 436–40. http://dx.doi.org/10.18287/2412-6179-co-696.
Full textGashnikov, M. V. "Interpolation of multidimensional signals using the reduction of the dimension of parametric spaces of decision rules." Information Technology and Nanotechnology, no. 2391 (2019): 31–40. http://dx.doi.org/10.18287/1613-0073-2019-2391-31-40.
Full textYou, You Peng, and Jun He. "A Parametric Interpolator with Smooth Kinematic Profiles for High Speed Machining." Key Engineering Materials 315-316 (July 2006): 169–73. http://dx.doi.org/10.4028/www.scientific.net/kem.315-316.169.
Full textGuo, Jing Jie, and Wei Tang. "Design of Pythagorean Hodograph Curve Interpolator Based on NiosII Embedded Processor and FPGA." Advanced Materials Research 383-390 (November 2011): 6868–72. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.6868.
Full textLiang, H., H. Hong, and J. Svoboda. "A Combined 3D Linear and Circular Interpolation Technique for Multi-Axis CNC Machining." Journal of Manufacturing Science and Engineering 124, no. 2 (April 29, 2002): 305–12. http://dx.doi.org/10.1115/1.1445154.
Full textPuidokas, Vytenis. "ECONOMICAL INTERPOLATOR IN A ΣΔ D/A CONVERTER." Mokslas - Lietuvos ateitis 2, no. 1 (February 28, 2010): 32–35. http://dx.doi.org/10.3846/mla.2010.007.
Full textDissertations / Theses on the topic "Interpolator"
Bajramovic, Jasko. "FPGA Implementation of an Interpolator for PWM applications." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10406.
Full textIn this thesis, a multirate realization of an interpolation operation is explored. As one of the requirements for proper functionality of the digital pulse-width modulator, a 16-bit digital input signal is to be upsampled 32 times. To obtain the required oversampling ratio, five separate interpolator stages were designed and implemented. Each interpolator stage performed uppsampling by a factor of two followed by an image-rejection lowpass FIR filter. Since, each individual interpolator stage upsamples the input signal by a factor of two, interpolation filters were realized as a half-band FIR filters. This kind of linear-phase FIR filters have a nice property of having every other filter coefficient equal to zero except for the middle one which equals 0.5. By utilizing the half-band FIR filters for the actual realization of the interpolation filters, the overall computational complexity was substantially reduced. In addition, several multirate techniques have been utilized for deriving more efficient interpolator structures. Hence, the impulse response of individual interpolator filters was rewritten into its corresponding polyphase form. This further simplifies the interpolator realization. To eliminate multiplication by 0.5 in one of two polyphase subfilters, the filter gain was deliberately increased by a factor of two. Thus, one polyphase path only contained delay elements. In addition, for the realization of filter multipliers, a multiple constant multiplication, (MCM), algorithm was utilized. The idea behind the MCM algorithm, was to perform multiplication operations as a number of addition operations and appropriate input signal shifts. As a result, less hardware was needed for the actual interpolation chain implementation. For the correct functionality of the interpolator chain, scaling coefficients were introduced into the each interpolation stage. This is done in order to reduce the possibility of overflow. For the scaling process, a safe scaling method was used. The actual quantization noise generated by the interpolator chain was also estimated and appropriate system adjustments were performed.
Smith, Anthony Paul. "Improved axis synchronisation in a distributed machine control interpolator." Thesis, Nottingham Trent University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261374.
Full textLu, Yao. "Development and implementation of parametric interpolator in motion control systems /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?ECED%202007%20LUY.
Full textCheng, Ching-Chung. "Investigations into Green's function as inversion-free solution of the Kriging equation, with Geodetic applications." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1095792962.
Full textTitle from first page of PDF file. Document formatted into pages; contains ix, 125 p.; also includes graphics (some col.). Includes bibliographical references (p. 101-103).
Liang, Hong. "Minimum error tool path generation method and an interpolator design technique for ultra-precision multiaxis CNC machining." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0021/NQ43585.pdf.
Full textNamachivayam, Abishek. "High speed Clock and Data Recovery Analysis." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587583678200267.
Full textMatoušek, Vojtěch. "Návrh a řízení CNC stroje." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218945.
Full textSievert, Sebastian [Verfasser], Helmut [Akademischer Betreuer] Gräb, Robert [Gutachter] Weigel, and Helmut [Gutachter] Gräb. "Development of Analytical Behavioral Models for Digitally Controlled Edge Interpolator (DCEI) based Digital-to-Time Converter (DTC) Circuits / Sebastian Sievert ; Gutachter: Robert Weigel, Helmut Gräb ; Betreuer: Helmut Gräb." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1192441753/34.
Full textVenkataVikram, Dabbugottu. "FPGA Implementation of Flexible Interpolators and Decimators." Thesis, Linköpings universitet, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-89761.
Full textSuarez, Carlos Alberto Galeano. "Otimização da produção de etanol 2G a partir de hexoses e pentoses." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/3950.
Full textUniversidade Federal de Sao Carlos
The industrial production of fuel ethanol and sugar generates the main byproduct of sugarcane bagasse, which is burned in boilers for power generation. However, as a lignocellulosic material (consisting basically of three polymers: cellulose, hemicellulose and lignin), bagasse can be reused for the production of second generation bioethanol (2G), which is a renewable and environmentally friendly biofuel. For industrial 2G bioethanol production becomes economically feasible, the use of all fermentable fractions present in the bagasse is required: C6 fraction (cellulose) and C5 fraction (hemicellulose). These fractions are subjected to hydrolysis processes that generate as main sugars glucose and xylose respectively. It is important, therefore, that the microorganism employed for the production of ethanol 2G is able to utilize all the sugars generated during the hydrolysis process. In this work we chose the yeast Saccharomyces cerevisiae to be the main microorganism used in the industrial production of ethanol, although unfortunately, this yeast is unable to ferment xylose. However, while S. cerevisiae does not use xylose, can ferment xylulose obtained by isomerization of xylose by the enzyme glucose isomerase. The objective of this study was to develop and evaluate technological alternatives for the production of ethanol 2G from hexoses and pentoses using wild S. cerevisiae. In relation to the C6 fraction, in this work two important aspects have been addressed: i) study of the operation regime of a fed-batch reactor enzymatic hydrolysis of the C6 fraction of bagasse from sugarcane, yielding values of final glucose concentration of 200 g.L-1, higher than 45 g.L-1 achieved in batch reactor; ii) kinetic modeling of complex systems (enzymatic hydrolysis of lignocellulosic substrates), in which an interpolator was developed using fuzzy logic as an important tool to represent the processes of enzymatic hydrolysis of lignocellulosic materials for rugged and reliable manner. Now, in relation to the C5 fraction initially applied simple techniques of Evolutionary Engineering, leading to the selection of a different strain of S. cerevisiae, adapted to assimilate xylulose in minimal medium and characterized by reduced formation of xylitol, which demonstrated a selectivity of ~7 getanol.gxilitol -1, significantly higher than the selectivity achieved by the wild strain of ~2 getanol.gxilitol -1. The selected strain was studied in batch cultures conducted in bench scale reactor under different conditions of oxygen limitation. It was found that the production of ethanol is favored over the formation of xylitol, keeping the flow of consumed xylulose above 0,5 mmol.gMS -1.h-1 for flow of oxygen consumption of 0.1 mmol.gMS -1.h-1, reaching in this condition selectivities around 4 getanol.gxilitol -1. For zero flow of oxygen (anaerobic culture) or above 0,3 mmol.gMS -1.h-1, ethanol production is drastically reduced , regardless of the flow xylulose assimilated by the cells.
A produção industrial de etanol combustível e de açúcar gera como principal subproduto o bagaço de cana de açúcar, que é queimado nas caldeiras para geração de energia. Entretanto, por ser um material lignocelulósico (constituído basicamente por três polímeros: celulose, hemicelulose e lignina), o bagaço pode ser reaproveitado para a produção de bioetanol de segunda geração (2G), que é um biocombustível renovável e ambientalmente amigável. Para que a produção industrial de etanol 2G se torne economicamente viável, é necessário o aproveitamento de todas as frações fermentescíveis presentes no bagaço de cana: fração C6 (celulose) e fração C5 (hemicelulose). Estas frações são submetidas a processos de hidrólise que geram como principais açúcares glicose e xilose respetivamente. É importante, portanto, que o microrganismo empregado para a produção de etanol 2G seja capaz de utilizar todos os açúcares gerados no processo de hidrólise. Neste trabalho foi escolhida a levedura Saccharomyces cerevisiae por ser o principal microrganismo utilizado na produção industrial de álcool combustível, embora, infelizmente, esta levedura seja incapaz de fermentar xilose. No entanto, embora S. cerevisiae não utilize xilose, pode fermentar a xilulose obtida pela isomerização de xilose pela enzima xilose isomerase conhecida industrialmente como glicose isomerase. Assim, o objetivo do presente trabalho foi desenvolver e avaliar alternativas tecnológicas para a produção de etanol 2G a partir de hexoses e pentoses, utilizando S. cerevisiae selvagem. Em relação à Fração C6, neste trabalho foram abordados dois aspectos importantes: i) estudo da operação em regime de batelada alimentada de um reator de hidrólise enzimática da fração C6 do bagaço de cana de açúcar, obtendo-se valores de concentração final de glicose de cerca de 200 g.L-1, superiores aos 45 g.L-1 alcançados em reator operado em bateladas simples; ii) modelagem cinética de sistemas complexos (hidrólise enzimática de substratos lignocelulósicos), no qual foi desenvolvido um interpolador utilizando a lógica fuzzy como uma ferramenta importante para representar os processos de hidrólise enzimática de materiais lignocelulósicos de forma robusta e confiável. Já em relação à Fração C5, inicialmente aplicou-se técnicas simples de Engenharia Evolutiva, levando à seleção de uma linhagem diferenciada de S. cerevisiae, adaptada à assimilação de xilulose em meio mínimo e caracterizada por reduzida formação de xilitol, a qual apresentou uma seletividade de ~7 getanol.gxilitol -1, valor significativamente superior à seletividade alcançada pela linhagem selvagem, de ~2 getanol.gxilitol -1. A linhagem selecionada foi então estudada em cultivos em batelada conduzidos em biorreator de bancada, sob diferentes condições de limitação por oxigênio. Verificou-se que a produção de etanol é favorecida, em detrimento da formação de xilitol, mantendo-se o fluxo de xilulose consumida acima de 0,5 mmol.gMS -1.h-1, para fluxo de oxigênio consumido de 0,1 mmol.gMS -1.h-1, alcançando-se nessa condição seletividades em torno de 4 getanol.gxilitol -1. Para fluxos de oxigênio nulo (cultivo anaeróbio) ou acima de 0,3 mmol.gMS -1.h-1, a produção de etanol é drasticamente reduzida, independentemente do fluxo de xilulose assimilado pelas células.
Books on the topic "Interpolator"
A, Brudnyĭ I͡U. Interpolation functors and interpolation spaces. Amsterdam: North-Holland, 1991.
Find full textLunardi, Alessandra. Interpolation Theory. Pisa: Scuola Normale Superiore, 2018. http://dx.doi.org/10.1007/978-88-7642-638-4.
Full textMastroianni, Giuseppe, and Gradimir V. Milovanović. Interpolation Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68349-0.
Full textLorentz, Rudolph A. Multivariate Birkhoff Interpolation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0088788.
Full textBook chapters on the topic "Interpolator"
Law, Vivien A. "Erchanbert and the Interpolator." In History of Linguistic Thought in the Early Middle Ages, 223. Amsterdam: John Benjamins Publishing Company, 1993. http://dx.doi.org/10.1075/sihols.71.11law.
Full textKim, Hyo-Ju, and Chang-Sung Jeong. "An Adaptive Image Interpolation Using the Quadratic Spline Interpolator." In Lecture Notes in Computer Science, 205–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45129-3_18.
Full textBălaş, Marius M., Marius Socaci, and Onisifor Olaru. "A FPGA Floating Point Interpolator." In Soft Computing Applications, 331–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33941-7_30.
Full textJančík, Pavel, Leonardo Alt, Grigory Fedyukovich, Antti E. J. Hyvärinen, Jan Kofroň, and Natasha Sharygina. "PVAIR: Partial Variable Assignment InterpolatoR." In Fundamental Approaches to Software Engineering, 419–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49665-7_25.
Full textZhao, Huan, Limin Zhu, Zhenhua Xiong, and Han Ding. "Design of a FPGA-Based NURBS Interpolator." In Intelligent Robotics and Applications, 477–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25489-5_46.
Full textGuanghua, Chen, Wang Anqi, Hu Dengji, Ma Shiwei, and Zeng Weimin. "VLSI Implementation of Sub-pixel Interpolator for AVS Encoder." In Lecture Notes in Computer Science, 351–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15597-0_39.
Full textMehra, Rajesh, and Ravinder Kaur. "Reconfigurable Area and Speed Efficient Interpolator Using DALUT Algorithm." In Communications in Computer and Information Science, 117–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17878-8_13.
Full textZhang, Liyan, Kuisheng Wang, Yuchao Bian, and Hu Chen. "A Real-Time NURBS Interpolator with Feed Rate Adjustment." In Lecture Notes in Computer Science, 1064–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87442-3_131.
Full textChen, Liangji, and Huiying Li. "Tool Trajectory Generation with a Speed-Controlled Spline Interpolator." In 2011 International Conference in Electrics, Communication and Automatic Control Proceedings, 681–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8849-2_86.
Full textHu, Jianhua, Yunkuan Wang, Hui Wang, and Ze Zong. "A High Efficient Real-Time Look-Ahead NURBS Interpolator." In Lecture Notes in Electrical Engineering, 317–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34531-9_33.
Full textConference papers on the topic "Interpolator"
Moetakef Imani, Behnam, and Amirmohammad Ghandehariun. "Look-Ahead NURBS-PH Interpolation for High Speed CNC Machining." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24426.
Full textIwanowski, M. "Universal morphological interpolator." In rnational Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1530221.
Full textEssai, Mohamed H. "Smart robust interpolator." In 2014 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2014. http://dx.doi.org/10.1109/edm.2014.6882488.
Full textXingbo Wang, Gang Chen, and Liancheng Zeng. "A rapid and precise interpolator for CNC smooth curve interpolation." In 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design. IEEE, 2009. http://dx.doi.org/10.1109/caidcd.2009.5375092.
Full textDeng, Tian-Bo. "Narrow-band 333 interpolator." In 2017 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, 2017. http://dx.doi.org/10.1109/icdamt.2017.7904970.
Full textTsimpos, Andreas, George Souliotis, Andreas Demartinos, and Spiros Vlassis. "All digital phase interpolator." In 2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, 2015. http://dx.doi.org/10.1109/dtis.2015.7127354.
Full textLettington, Alan H., and Qi H. Hong. "Interpolator for infrared images." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Bjorn F. Andresen and Freeman D. Shepherd. SPIE, 1993. http://dx.doi.org/10.1117/12.160570.
Full textSun, Kai, and Gang Zhang. "A Highly Linear Multi-Clock Combining Phase Interpolator Insensitive to Interpolation Error." In 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2021. http://dx.doi.org/10.1109/icta53157.2021.9661759.
Full textPaul, Thara, and Riboy Cheriyan. "High speed interpolator with fast adder." In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014. http://dx.doi.org/10.1109/iccicct.2014.6993018.
Full textYang, Yanchao, and Stefano Soatto. "S2F: Slow-to-Fast Interpolator Flow." In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.401.
Full textReports on the topic "Interpolator"
Schaum, Alan. Principles of Interpolator Design and Evaluation. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada242822.
Full textLucke, Robert L. A Local Interpolator Derived From the Discrete Fourier Transform. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada251066.
Full textJorgensen, Lars. Digital Data Rate Interpolator and Modulator. SBIR. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada300496.
Full textO'Donnell, Emily Jean, Jeffrey Hammett Peterson, and Kevin Guy Honnell. Evaluation of Accuracy and Performance of a Bilinear Interpolator with Dense EOS Tables in xRage. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1511206.
Full textKingston, A. W., A. Mort, C. Deblonde, and O H Ardakani. Hydrogen sulfide (H2S) distribution in the Triassic Montney Formation of the Western Canadian Sedimentary Basin. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329266.
Full textNolting, J., and U. Yang. Improving Interpolation in BoomerAMG. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/894324.
Full textFritsch, F. N. The LEOS Interpolation Package. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/15005830.
Full textDe Boor, Carl, and Amos Ron. On Multivariate Polynomial Interpolation. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada204099.
Full textFoley, T. A. Scattered data interpolation codes. Office of Scientific and Technical Information (OSTI), February 1985. http://dx.doi.org/10.2172/5936369.
Full textChen, Qi, and Ivo Babuska. Polynomial Interpolation and Approximation of Real Functions 2: Symmetrical Interpolation for the Triangle. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada277345.
Full text