Academic literature on the topic 'Interpretable deep learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Interpretable deep learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Interpretable deep learning"
Gangopadhyay, Tryambak, Sin Yong Tan, Anthony LoCurto, James B. Michael, and Soumik Sarkar. "Interpretable Deep Learning for Monitoring Combustion Instability." IFAC-PapersOnLine 53, no. 2 (2020): 832–37. http://dx.doi.org/10.1016/j.ifacol.2020.12.839.
Full textZheng, Hong, Yinglong Dai, Fumin Yu, and Yuezhen Hu. "Interpretable Saliency Map for Deep Reinforcement Learning." Journal of Physics: Conference Series 1757, no. 1 (2021): 012075. http://dx.doi.org/10.1088/1742-6596/1757/1/012075.
Full textRuffolo, Jeffrey A., Jeremias Sulam, and Jeffrey J. Gray. "Antibody structure prediction using interpretable deep learning." Patterns 3, no. 2 (2022): 100406. http://dx.doi.org/10.1016/j.patter.2021.100406.
Full textBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Full textArik, Sercan Ö., and Tomas Pfister. "TabNet: Attentive Interpretable Tabular Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6679–87. http://dx.doi.org/10.1609/aaai.v35i8.16826.
Full textLin, Chih-Hsu, and Olivier Lichtarge. "Using interpretable deep learning to model cancer dependencies." Bioinformatics 37, no. 17 (2021): 2675–81. http://dx.doi.org/10.1093/bioinformatics/btab137.
Full textLiao, WangMin, BeiJi Zou, RongChang Zhao, YuanQiong Chen, ZhiYou He, and MengJie Zhou. "Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis." IEEE Journal of Biomedical and Health Informatics 24, no. 5 (2020): 1405–12. http://dx.doi.org/10.1109/jbhi.2019.2949075.
Full textMatsubara, Takashi. "Bayesian deep learning: A model-based interpretable approach." Nonlinear Theory and Its Applications, IEICE 11, no. 1 (2020): 16–35. http://dx.doi.org/10.1587/nolta.11.16.
Full textLiu, Yi, Kenneth Barr, and John Reinitz. "Fully interpretable deep learning model of transcriptional control." Bioinformatics 36, Supplement_1 (2020): i499—i507. http://dx.doi.org/10.1093/bioinformatics/btaa506.
Full textYamuna, Vadada. "Interpretable Deep Learning Models for Improved Diabetes Diagnosis." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem50834.
Full textDissertations / Theses on the topic "Interpretable deep learning"
FERRONE, LORENZO. "On interpretable information in deep learning: encoding and decoding of distributed structures." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2016. http://hdl.handle.net/2108/202245.
Full textXie, Ning. "Towards Interpretable and Reliable Deep Neural Networks for Visual Intelligence." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596208422672732.
Full textEmschwiller, Matt V. "Understanding neural network sample complexity and interpretable convergence-guaranteed deep learning with polynomial regression." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127290.
Full textTerzi, Matteo. "Learning interpretable representations for classification, anomaly detection, human gesture and action recognition." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423183.
Full textREPETTO, MARCO. "Black-box supervised learning and empirical assessment: new perspectives in credit risk modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402366.
Full textThibeau-Sutre, Elina. "Reproducible and interpretable deep learning for the diagnosis, prognosis and subtyping of Alzheimer’s disease from neuroimaging data." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS495.
Full textParekh, Jayneel. "A Flexible Framework for Interpretable Machine Learning : application to image and audio classification." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT032.
Full textBennetot, Adrien. "A Neural-Symbolic learning framework to produce interpretable predictions for image classification." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS418.
Full textSheikhalishahi, Seyedmostafa. "Machine learning applications in Intensive Care Unit." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/339274.
Full textLoiseau, Romain. "Real-World 3D Data Analysis : Toward Efficiency and Interpretability." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0028.
Full textBooks on the topic "Interpretable deep learning"
Thakoor, Kaveri Anil. Robust, Interpretable, and Portable Deep Learning Systems for Detection of Ophthalmic Diseases. [publisher not identified], 2022.
Find full textBook chapters on the topic "Interpretable deep learning"
Kamath, Uday, and John Liu. "Explainable Deep Learning." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_6.
Full textPreuer, Kristina, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, and Thomas Unterthiner. "Interpretable Deep Learning in Drug Discovery." In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_18.
Full textPerumal, Boominathan, Swathi Jamjala Narayanan, and Sangeetha Saman. "Explainable Deep Learning Architectures for Product Recommendations." In Explainable, Interpretable, and Transparent AI Systems. CRC Press, 2024. http://dx.doi.org/10.1201/9781003442509-13.
Full textWüthrich, Mario V., and Michael Merz. "Selected Topics in Deep Learning." In Springer Actuarial. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_11.
Full textRodrigues, Mark, Michael Mayo, and Panos Patros. "Interpretable Deep Learning for Surgical Tool Management." In Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87444-5_1.
Full textBatra, Reenu, and Manish Mahajan. "Deep Learning Models: An Understandable Interpretable Approach." In Deep Learning for Security and Privacy Preservation in IoT. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6186-0_10.
Full textShinde, Swati V., and Sagar Lahade. "Deep Learning for Tea Leaf Disease Classification." In Applied Computer Vision and Soft Computing with Interpretable AI. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003359456-20.
Full textLu, Yu, Deliang Wang, Qinggang Meng, and Penghe Chen. "Towards Interpretable Deep Learning Models for Knowledge Tracing." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52240-7_34.
Full textPasquini, Dario, Giuseppe Ateniese, and Massimo Bernaschi. "Interpretable Probabilistic Password Strength Meters via Deep Learning." In Computer Security – ESORICS 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58951-6_25.
Full textKontogiannis, Andreas, and George A. Vouros. "Inherently Interpretable Deep Reinforcement Learning Through Online Mimicking." In Explainable and Transparent AI and Multi-Agent Systems. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40878-6_10.
Full textConference papers on the topic "Interpretable deep learning"
Gazula, Vinay Ram, Katherine G. Herbert, Yasser Abduallah, and Jason T. L. Wang. "Interpretable Deep Learning for Solar Flare Prediction." In 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2024. https://doi.org/10.1109/ictai62512.2024.00078.
Full textTasnim, Raihana, Kaushik Roy, and Madhuri Siddula. "Interpretable Deep Learning Model for Multiclass Brain Tumor Classification." In 2024 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2024. https://doi.org/10.1109/icmla61862.2024.00219.
Full textLi, Yizhen, Yang Zhang, and Xiao Yao. "Towards Self-Interpretable Graph Neural Networks via Augmentation-Contrastive Learning." In 2025 6th International Conference on Computer Vision, Image and Deep Learning (CVIDL). IEEE, 2025. https://doi.org/10.1109/cvidl65390.2025.11086007.
Full textChisty, Tanjir Alam, and Md Mahbubur Rahman Rahman. "Ransomware Detection Utilizing Ensemble Based Interpretable Deep Learning Model." In 2024 IEEE International Conference on Power, Electrical, Electronics and Industrial Applications (PEEIACON). IEEE, 2024. https://doi.org/10.1109/peeiacon63629.2024.10800005.
Full textBhatti, Uzair Aslam, Yang Ke Yu, O. Zh Mamyrbayev, A. A. Aitkazina, Tang Hao, and N. O. Zhumazhan. "Recommendations for Healthcare: An Interpretable Approach Using Deep Learning." In 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI). IEEE, 2024. https://doi.org/10.1109/prai62207.2024.10827288.
Full textHu, Shulin, Cao Zeng, Minti Liu, and Guisheng Liao. "Learning Interpretable Phase Difference Mapping for Scalable DOA Estimation via Deep Learning." In 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE, 2024. http://dx.doi.org/10.1109/icccworkshops62562.2024.10693687.
Full textTemenos, Anastasios, Nikos Temenos, Ioannis Rallis, Margarita Skamantzari, Anastasios Doulamis, and Nikolaos Doulamis. "Identifying False Negative Flood Events Using Interpretable Deep Learning Framework." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10642460.
Full textSoelistyo, Christopher J., and Alan R. Lowe. "Discovering interpretable models of scientific image data with deep learning." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00682.
Full textB, Srinithi, Sruthi Nirmala S. R, Senthil Kumar Thangavel, Somasundaram K, and M. Ramasamy. "Enhancing Milk Yield Forecasting in Dairy Farming Using an Interpretable Machine Learning Framework." In 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL). IEEE, 2025. https://doi.org/10.1109/icsadl65848.2025.10933035.
Full textSah, Nabin Kumar, M. Vivek Srikar Reddy, Karthik Ullas, Tripty Singh, Adhirath Mandal, and Suman Chatterji. "Interpretable Deep Learning for Skin Cancer Detection: Exploring LIME and SHAP." In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10723848.
Full textReports on the topic "Interpretable deep learning"
Jiang, Peishi, Xingyuan Chen, Maruti Mudunuru, et al. Towards Trustworthy and Interpretable Deep Learning-assisted Ecohydrological Models. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769787.
Full textBegeman, Carolyn, Marian Anghel, and Ishanu Chattopadhyay. Interpretable Deep Learning for the Earth System with Fractal Nets. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769730.
Full textPasupuleti, Murali Krishna. Decision Theory and Model-Based AI: Probabilistic Learning, Inference, and Explainability. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv525.
Full textPasupuleti, Murali Krishna. Stochastic Computation for AI: Bayesian Inference, Uncertainty, and Optimization. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv325.
Full textPasupuleti, Murali Krishna. Neural Computation and Learning Theory: Expressivity, Dynamics, and Biologically Inspired AI. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv425.
Full text