Journal articles on the topic 'Interpretable deep learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Interpretable deep learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gangopadhyay, Tryambak, Sin Yong Tan, Anthony LoCurto, James B. Michael, and Soumik Sarkar. "Interpretable Deep Learning for Monitoring Combustion Instability." IFAC-PapersOnLine 53, no. 2 (2020): 832–37. http://dx.doi.org/10.1016/j.ifacol.2020.12.839.
Full textZheng, Hong, Yinglong Dai, Fumin Yu, and Yuezhen Hu. "Interpretable Saliency Map for Deep Reinforcement Learning." Journal of Physics: Conference Series 1757, no. 1 (2021): 012075. http://dx.doi.org/10.1088/1742-6596/1757/1/012075.
Full textRuffolo, Jeffrey A., Jeremias Sulam, and Jeffrey J. Gray. "Antibody structure prediction using interpretable deep learning." Patterns 3, no. 2 (2022): 100406. http://dx.doi.org/10.1016/j.patter.2021.100406.
Full textBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Full textArik, Sercan Ö., and Tomas Pfister. "TabNet: Attentive Interpretable Tabular Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6679–87. http://dx.doi.org/10.1609/aaai.v35i8.16826.
Full textLin, Chih-Hsu, and Olivier Lichtarge. "Using interpretable deep learning to model cancer dependencies." Bioinformatics 37, no. 17 (2021): 2675–81. http://dx.doi.org/10.1093/bioinformatics/btab137.
Full textLiao, WangMin, BeiJi Zou, RongChang Zhao, YuanQiong Chen, ZhiYou He, and MengJie Zhou. "Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis." IEEE Journal of Biomedical and Health Informatics 24, no. 5 (2020): 1405–12. http://dx.doi.org/10.1109/jbhi.2019.2949075.
Full textMatsubara, Takashi. "Bayesian deep learning: A model-based interpretable approach." Nonlinear Theory and Its Applications, IEICE 11, no. 1 (2020): 16–35. http://dx.doi.org/10.1587/nolta.11.16.
Full textLiu, Yi, Kenneth Barr, and John Reinitz. "Fully interpretable deep learning model of transcriptional control." Bioinformatics 36, Supplement_1 (2020): i499—i507. http://dx.doi.org/10.1093/bioinformatics/btaa506.
Full textYamuna, Vadada. "Interpretable Deep Learning Models for Improved Diabetes Diagnosis." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem50834.
Full textBang, Seojin, Pengtao Xie, Heewook Lee, Wei Wu, and Eric Xing. "Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (2021): 11396–404. http://dx.doi.org/10.1609/aaai.v35i13.17358.
Full textNisha, Mrs M. P. "Interpretable Deep Neural Networks using SHAP and LIME for Decision Making in Smart Home Automation." International Scientific Journal of Engineering and Management 04, no. 05 (2025): 1–7. https://doi.org/10.55041/isjem03409.
Full textBrinkrolf, Johannes, and Barbara Hammer. "Interpretable machine learning with reject option." at - Automatisierungstechnik 66, no. 4 (2018): 283–90. http://dx.doi.org/10.1515/auto-2017-0123.
Full textAn, Junkang, Yiwan Zhang, and Inwhee Joe. "Specific-Input LIME Explanations for Tabular Data Based on Deep Learning Models." Applied Sciences 13, no. 15 (2023): 8782. http://dx.doi.org/10.3390/app13158782.
Full textZinemanas, Pablo, Martín Rocamora, Marius Miron, Frederic Font, and Xavier Serra. "An Interpretable Deep Learning Model for Automatic Sound Classification." Electronics 10, no. 7 (2021): 850. http://dx.doi.org/10.3390/electronics10070850.
Full textMu, Xuechen, Zhenyu Huang, Qiufen Chen, et al. "DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification." International Journal of Molecular Sciences 25, no. 23 (2024): 12942. https://doi.org/10.3390/ijms252312942.
Full textMa, Shuang, Haifeng Wang, Wei Zhao, et al. "An interpretable deep learning model for hallux valgus prediction." Computers in Biology and Medicine 185 (February 2025): 109468. https://doi.org/10.1016/j.compbiomed.2024.109468.
Full textGagne II, David John, Sue Ellen Haupt, Douglas W. Nychka, and Gregory Thompson. "Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms." Monthly Weather Review 147, no. 8 (2019): 2827–45. http://dx.doi.org/10.1175/mwr-d-18-0316.1.
Full textAbdel-Basset, Mohamed, Hossam Hawash, Khalid Abdulaziz Alnowibet, Ali Wagdy Mohamed, and Karam M. Sallam. "Interpretable Deep Learning for Discriminating Pneumonia from Lung Ultrasounds." Mathematics 10, no. 21 (2022): 4153. http://dx.doi.org/10.3390/math10214153.
Full textChen, Xingguo, Yang Li, Xiaoyan Xu, and Min Shao. "A Novel Interpretable Deep Learning Model for Ozone Prediction." Applied Sciences 13, no. 21 (2023): 11799. http://dx.doi.org/10.3390/app132111799.
Full textZhang, Rongquan, Siqi Bu, Min Zhou, Gangqiang Li, Baishao Zhan, and Zhe Zhang. "Deep reinforcement learning based interpretable photovoltaic power prediction framework." Sustainable Energy Technologies and Assessments 67 (July 2024): 103830. http://dx.doi.org/10.1016/j.seta.2024.103830.
Full textXu, Lingfeng, Julie Liss, and Visar Berisha. "Dysarthria detection based on a deep learning model with a clinically-interpretable layer." JASA Express Letters 3, no. 1 (2023): 015201. http://dx.doi.org/10.1121/10.0016833.
Full textT. Vengatesh. "Transparent Decision-Making with Explainable Ai (Xai): Advances in Interpretable Deep Learning." Journal of Information Systems Engineering and Management 10, no. 4 (2025): 1295–303. https://doi.org/10.52783/jisem.v10i4.10584.
Full textKoriakina, Nadezhda, Nataša Sladoje, Vladimir Bašić, and Joakim Lindblad. "Deep multiple instance learning versus conventional deep single instance learning for interpretable oral cancer detection." PLOS ONE 19, no. 4 (2024): e0302169. http://dx.doi.org/10.1371/journal.pone.0302169.
Full textReddy, Kudumula Tejeswar, B. Dilip Chakravarthy, M. Subbarao, and Asadi Srinivasulu. "Enhancing Plant Disease Detection through Deep Learning." International Journal of Scientific Methods in Engineering and Management 01, no. 10 (2023): 01–13. http://dx.doi.org/10.58599/ijsmem.2023.11001.
Full textCheng, Xueyi, and Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design." Journal of Industrial Engineering and Applied Science 2, no. 6 (2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Full textSchmid, Ute, and Bettina Finzel. "Mutual Explanations for Cooperative Decision Making in Medicine." KI - Künstliche Intelligenz 34, no. 2 (2020): 227–33. http://dx.doi.org/10.1007/s13218-020-00633-2.
Full textWei, Kaihua, Bojian Chen, Jingcheng Zhang, et al. "Explainable Deep Learning Study for Leaf Disease Classification." Agronomy 12, no. 5 (2022): 1035. http://dx.doi.org/10.3390/agronomy12051035.
Full textWei, Kaihua, Bojian Chen, Jingcheng Zhang, et al. "Explainable Deep Learning Study for Leaf Disease Classification." Agronomy 12, no. 5 (2022): 1035. http://dx.doi.org/10.3390/agronomy12051035.
Full textWei, Kaihua, Bojian Chen, Jingcheng Zhang, et al. "Explainable Deep Learning Study for Leaf Disease Classification." Agronomy 12, no. 5 (2022): 1035. http://dx.doi.org/10.3390/agronomy12051035.
Full textWeng, Tsui-Wei (Lily). "Towards Trustworthy Deep Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 20 (2024): 22682. http://dx.doi.org/10.1609/aaai.v38i20.30298.
Full textMonje, Leticia, Ramón A. Carrasco, Carlos Rosado, and Manuel Sánchez-Montañés. "Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain." Mathematics 10, no. 9 (2022): 1428. http://dx.doi.org/10.3390/math10091428.
Full textSieusahai, Alexander, and Matthew Guzdial. "Explaining Deep Reinforcement Learning Agents in the Atari Domain through a Surrogate Model." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 17, no. 1 (2021): 82–90. http://dx.doi.org/10.1609/aiide.v17i1.18894.
Full textAjioka, Takehiro, Nobuhiro Nakai, Okito Yamashita, and Toru Takumi. "End-to-end deep learning approach to mouse behavior classification from cortex-wide calcium imaging." PLOS Computational Biology 20, no. 3 (2024): e1011074. http://dx.doi.org/10.1371/journal.pcbi.1011074.
Full textZhu, Xiyue, Yu Cheng, Jiafeng He, and Juan Guo. "Adaptive Mask-Based Interpretable Convolutional Neural Network (AMI-CNN) for Modulation Format Identification." Applied Sciences 14, no. 14 (2024): 6302. http://dx.doi.org/10.3390/app14146302.
Full textXu, Mouyi, and Lijun Chang. "Graph Edit Distance Estimation: A New Heuristic and A Holistic Evaluation of Learning-based Methods." Proceedings of the ACM on Management of Data 3, no. 3 (2025): 1–24. https://doi.org/10.1145/3725304.
Full textJoseph, Aaron Tsapa. "Interpretable Deep Learning for Fintech: Enabling Ethical and Explainable AI-Driven Financial Solutions." Journal of Scientific and Engineering Research 11, no. 3 (2024): 271–77. https://doi.org/10.5281/zenodo.11220841.
Full textR. S. Deshpande, P. V. Ambatkar. "Interpretable Deep Learning Models: Enhancing Transparency and Trustworthiness in Explainable AI." Proceeding International Conference on Science and Engineering 11, no. 1 (2023): 1352–63. http://dx.doi.org/10.52783/cienceng.v11i1.286.
Full textShamsuzzaman, Md. "Explainable and Interpretable Deep Learning Models." Global Journal of Engineering Sciences 5, no. 5 (2020). http://dx.doi.org/10.33552/gjes.2020.05.000621.
Full textAhsan, Md Manjurul, Md Shahin Ali, Md Mehedi Hassan, et al. "Monkeypox Diagnosis with Interpretable Deep Learning." IEEE Access, 2023, 1. http://dx.doi.org/10.1109/access.2023.3300793.
Full textDelaunay, Antoine, and Hannah M. Christensen. "Interpretable Deep Learning for Probabilistic MJO Prediction." Geophysical Research Letters, August 24, 2022. http://dx.doi.org/10.1029/2022gl098566.
Full textAhn, Daehwan, Dokyun Lee, and Kartik Hosanagar. "Interpretable Deep Learning Approach to Churn Management." SSRN Electronic Journal, 2020. http://dx.doi.org/10.2139/ssrn.3981160.
Full textRichman, Ronald, and Mario V. Wuthrich. "LocalGLMnet: interpretable deep learning for tabular data." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3892015.
Full textKim, Dohyun, Jungtae Lee, Jangsup Moon, and Taesup Moon. "Interpretable Deep Learning‐based Hippocampal Sclerosis Classification." Epilepsia Open, September 29, 2022. http://dx.doi.org/10.1002/epi4.12655.
Full textZografopoulos, Lazaros, Maria Chiara Iannino, Ioannis Psaradellis, and Georgios Sermpinis. "Industry return prediction via interpretable deep learning." European Journal of Operational Research, August 2024. http://dx.doi.org/10.1016/j.ejor.2024.08.032.
Full textWagle, Manoj M., Siqu Long, Carissa Chen, Chunlei Liu, and Pengyi Yang. "Interpretable deep learning in single-cell omics." Bioinformatics, June 18, 2024. http://dx.doi.org/10.1093/bioinformatics/btae374.
Full textOyedeji, Mojeed Opeyemi, Emmanuel Okafor, Hussein Samma, and Motaz Alfarraj. "Interpretable Deep Learning for Classifying Skin Lesions." International Journal of Intelligent Systems 2025, no. 1 (2025). https://doi.org/10.1155/int/2751767.
Full textLi, Xuhong, Haoyi Xiong, Xingjian Li, et al. "Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond." Knowledge and Information Systems, September 14, 2022. http://dx.doi.org/10.1007/s10115-022-01756-8.
Full textHuang, Liyao, Weimin Zheng, and Zuohua Deng. "TOURISM DEMAND FORECASTING: AN INTERPRETABLE DEEP LEARNING MODEL." Tourism Analysis, 2024. http://dx.doi.org/10.3727/108354224x17180286995735.
Full textJiang, Kai, Zheli Xiong, Qichong Yang, Jianpeng Chen, and Gang Chen. "An interpretable ensemble method for deep representation learning." Engineering Reports, July 4, 2023. http://dx.doi.org/10.1002/eng2.12725.
Full text