To see the other types of publications on this topic, follow the link: Intersubband polariton.

Journal articles on the topic 'Intersubband polariton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Intersubband polariton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tran, Ngoc, Giorgio Biasiol, Arnaud Jollivet, et al. "Evidence of Intersubband Linewidth Narrowing Using Growth Interruption Technique." Photonics 6, no. 2 (2019): 38. http://dx.doi.org/10.3390/photonics6020038.

Full text
Abstract:
We report on the systematic study of two main scattering mechanisms on intersubband transitions, namely ionized impurity scattering and interface roughness scattering. The former mechanism has been investigated as a function of the dopants position within a multiple GaAs/AlGaAs quantum well structure and compared to the transition of an undoped sample. The study on the latter scattering mechanism has been conducted using the growth interruption technique. We report an improvement of the intersubband (ISB) transition linewidth up to 11% by interrupting growth at GaAs-on-AlGaAs interfaces. As a
APA, Harvard, Vancouver, ISO, and other styles
2

Ohtani, Keita, Bo Meng, Martin Franckié, et al. "An electrically pumped phonon-polariton laser." Science Advances 5, no. 7 (2019): eaau1632. http://dx.doi.org/10.1126/sciadv.aau1632.

Full text
Abstract:
We report a device that provides coherent emission of phonon polaritons, a mixed state between photons and optical phonons in an ionic crystal. An electrically pumped GaInAs/AlInAs quantum cascade structure provides intersubband gain into the polariton mode at λ = 26.3 μm, allowing self-oscillations close to the longitudinal optical phonon energy of AlAs. Because of the large computed phonon fraction of the polariton of 65%, the emission appears directly on a Raman spectrum measurement, exhibiting a Stokes and anti-Stokes component with the expected shift of 48 meV.
APA, Harvard, Vancouver, ISO, and other styles
3

Anappara, Aji A., Alessandro Tredicucci, Fabio Beltram, Giorgio Biasiol, and Lucia Sorba. "Controlling polariton coupling in intersubband microcavities." Superlattices and Microstructures 41, no. 5-6 (2007): 308–12. http://dx.doi.org/10.1016/j.spmi.2007.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colombelli, R., C. Ciuti, Y. Chassagneux, and C. Sirtori. "Quantum cascade intersubband polariton light emitters." Semiconductor Science and Technology 20, no. 10 (2005): 985–90. http://dx.doi.org/10.1088/0268-1242/20/10/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geiser, Markus, Mattias Beck, and Jérôme Faist. "Terahertz intersubband polariton tuning by electrical gating." Optics Express 22, no. 2 (2014): 2126. http://dx.doi.org/10.1364/oe.22.002126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manceau, J. M., N. L. Tran, G. Biasiol, et al. "Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device." Applied Physics Letters 112, no. 19 (2018): 191106. http://dx.doi.org/10.1063/1.5029893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anappara, Aji A., Alessandro Tredicucci, Giorgio Biasiol, and Lucia Sorba. "Electrical control of polariton coupling in intersubband microcavities." Applied Physics Letters 87, no. 5 (2005): 051105. http://dx.doi.org/10.1063/1.2006976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anappara, Aji A., David Barate, Alessandro Tredicucci, Jan Devenson, Roland Teissier, and Alexei Baranov. "Giant intersubband polariton splitting in InAs/AlSb microcavities." Solid State Communications 142, no. 6 (2007): 311–13. http://dx.doi.org/10.1016/j.ssc.2007.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Załużny, M. "Intersubband polariton effects in metal-clad optical waveguides." Solid State Communications 97, no. 9 (1996): 809–13. http://dx.doi.org/10.1016/0038-1098(95)00646-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mezzapesa, Francesco P., Leonardo Viti, Lianhe Li, et al. "Chip‐Scale Terahertz Frequency Combs through Integrated Intersubband Polariton Bleaching." Laser & Photonics Reviews 15, no. 6 (2021): 2000575. http://dx.doi.org/10.1002/lpor.202000575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mezzapesa, Francesco P., Leonardo Viti, Lianhe Li, et al. "Terahertz Frequency Combs: Chip‐Scale Terahertz Frequency Combs through Integrated Intersubband Polariton Bleaching (Laser Photonics Rev. 15(6)/2021)." Laser & Photonics Reviews 15, no. 6 (2021): 2170035. http://dx.doi.org/10.1002/lpor.202170035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

ZAŁUŻNY, M., and W. ZIETKOWSKI. "ELECTRODYNAMIC RESPONSE OF MULTIPLE QUANTUM WELLS: THE INTERSUBBAND RESONANCE REGION." International Journal of High Speed Electronics and Systems 12, no. 03 (2002): 907–24. http://dx.doi.org/10.1142/s0129156402001745.

Full text
Abstract:
The electrodynamic properties of multiple quantum wells (MQWs) associated with intersubband transitions are discussed in context of infrared detectors. The effective medium approach is used for modeling of MQW structures. The usefulness of the concept of the radiative intersubband plasmon-polaritons in the description of the complex behavior of grazing-angle absorption spectra is also demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
13

Ziętkowski, W., and M. Załużny. "Intersubband Plasmon Polaritons in Multiple Quantum Well Structures." Acta Physica Polonica A 100, no. 3 (2001): 425–30. http://dx.doi.org/10.12693/aphyspola.100.425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wendler, L., and E. Kändler. "Intra- and Intersubband Plasmon-Polaritons in Semiconductor Quantum Wells." physica status solidi (b) 177, no. 1 (1993): 9–67. http://dx.doi.org/10.1002/pssb.2221770102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Liu, Ansheng. "Nonlinear intersubband plasmon polaritons in a quantum-well structure." Optics Communications 115, no. 1-2 (1995): 75–79. http://dx.doi.org/10.1016/0030-4018(95)00021-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kim, Daeik, Jaeyeon Yu, Inyong Hwang, et al. "Giant Nonlinear Circular Dichroism from Intersubband Polaritonic Metasurfaces." Nano Letters 20, no. 11 (2020): 8032–39. http://dx.doi.org/10.1021/acs.nanolett.0c02978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Yingnan, Jongwon Lee, Stephen March, et al. "Difference-Frequency Generation in Polaritonic Intersubband Nonlinear Metasurfaces." Advanced Optical Materials 6, no. 20 (2018): 1800681. http://dx.doi.org/10.1002/adom.201800681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zanotto, Simone, Giorgio Biasiol, Riccardo Degl’Innocenti, Lucia Sorba, and Alessandro Tredicucci. "Intersubband polaritons in a one-dimensional surface plasmon photonic crystal." Applied Physics Letters 97, no. 23 (2010): 231123. http://dx.doi.org/10.1063/1.3524823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pereira, Mauro F. "Interband vs. intersubband polaritons and the relevance of quantum confinement." physica status solidi (c) 6, no. 2 (2009): 424–27. http://dx.doi.org/10.1002/pssc.200880345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Manceau, J. M., S. Zanotto, T. Ongarello, et al. "Mid-infrared intersubband polaritons in dispersive metal-insulator-metal resonators." Applied Physics Letters 105, no. 8 (2014): 081105. http://dx.doi.org/10.1063/1.4893730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Song, Ya Feng, Qin Sheng Zhu, Xiang Lin Liu, Shao Yan Yang, and Zhan Guo Wang. "Plasmon mode coupling and depolarization shifts in AlGaAs/GaAs asymmetric step quantum wells with and without electric field." International Journal of Modern Physics B 29, no. 29 (2015): 1550212. http://dx.doi.org/10.1142/s0217979215502124.

Full text
Abstract:
We investigate the plasmon mode coupling and depolarization shifts in AlGaAs/GaAs asymmetric step quantum wells (ASQWs) of the two-subband model with the Bohm–Pine’s random-phase approximation with and without an applied electric field. By adjusting the well geometry parameters and material composition systematically, various characteristics of plasmons in ASQWs are found for different asymmetric cases. We find that (i) the intersubband plasmon has a large negative dispersion in long wavelength limit; (ii) the step width related depolarization shift depends on the number of subbands in the dee
APA, Harvard, Vancouver, ISO, and other styles
22

Anappara, Aji A., Alessandro Tredicucci, Fabio Beltram, Giorgio Biasiol, and Lucia Sorba. "Tunnel-assisted manipulation of intersubband polaritons in asymmetric coupled quantum wells." Applied Physics Letters 89, no. 17 (2006): 171109. http://dx.doi.org/10.1063/1.2367664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pisani, Francesco, Simone Zanotto, and Alessandro Tredicucci. "Highly resolved ultra-strong coupling between graphene plasmons and intersubband polaritons." Journal of the Optical Society of America B 37, no. 1 (2019): 19. http://dx.doi.org/10.1364/josab.37.000019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Laffaille, P., J. M. Manceau, T. Laurent та ін. "Intersubband polaritons at λ ∼ 2 μm in the InAs/AlSb system". Applied Physics Letters 112, № 20 (2018): 201113. http://dx.doi.org/10.1063/1.5023284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mann, Sander A., Nishant Nookala, Samuel C. Johnson, et al. "Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces." Optica 8, no. 5 (2021): 606. http://dx.doi.org/10.1364/optica.415581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Chih-Feng, Terefe G. Habteyes, Ting Shan Luk, et al. "Observation of Intersubband Polaritons in a Single Nanoantenna Using Nano-FTIR Spectroscopy." Nano Letters 19, no. 7 (2019): 4620–26. http://dx.doi.org/10.1021/acs.nanolett.9b01623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Załużny, M., and W. Zietkowski. "Intersubband plasmon–polaritons in MQW structures and their manifestation in IR spectra." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (2002): 370–73. http://dx.doi.org/10.1016/s1386-9477(01)00560-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Huber, R., A. A. Anappara, G. Günter, et al. "How fast electrons and photons mix: Sub-cycle switching of intersubband cavity polaritons." Journal of Physics: Conference Series 193 (November 1, 2009): 012060. http://dx.doi.org/10.1088/1742-6596/193/1/012060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Laurent, T., J. M. Manceau, E. Monroy та ін. "Short-wave infrared (λ = 3 μm) intersubband polaritons in the GaN/AlN system". Applied Physics Letters 110, № 13 (2017): 131102. http://dx.doi.org/10.1063/1.4979084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pisani, Francesco, Simone Zanotto, and Alessandro Tredicucci. "Highly resolved ultra-strong coupling between graphene plasmons and intersubband polaritons: publisher’s note." Journal of the Optical Society of America B 37, no. 2 (2020): 392. http://dx.doi.org/10.1364/josab.388368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Degl’Innocenti, R., S. Zanotto, A. Tredicucci, G. Biasiol, and L. Sorba. "One-dimensional surface-plasmon gratings for the excitation of intersubband polaritons in suspended membranes." Solid State Communications 151, no. 23 (2011): 1725–27. http://dx.doi.org/10.1016/j.ssc.2011.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pervishko, A. A., O. V. Kibis, and I. A. Shelykh. "Effect of a magnetic field on intersubband polaritons in a quantum well: strong to weak coupling conversion." Optics Letters 41, no. 15 (2016): 3595. http://dx.doi.org/10.1364/ol.41.003595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Colombelli, Raffaele, and Jean-Michel Manceau. "Perspectives for Intersubband Polariton Lasers." Physical Review X 5, no. 1 (2015). http://dx.doi.org/10.1103/physrevx.5.011031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dini, Dimitri, Rüdeger Köhler, Alessandro Tredicucci, Giorgio Biasiol, and Lucia Sorba. "Microcavity Polariton Splitting of Intersubband Transitions." Physical Review Letters 90, no. 11 (2003). http://dx.doi.org/10.1103/physrevlett.90.116401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

De Liberato, Simone, Cristiano Ciuti, and Chris C. Phillips. "Terahertz lasing from intersubband polariton-polariton scattering in asymmetric quantum wells." Physical Review B 87, no. 24 (2013). http://dx.doi.org/10.1103/physrevb.87.241304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nespolo, Jacopo, and Iacopo Carusotto. "Generalized Gross-Pitaevskii model for intersubband polariton lasing." Physical Review B 100, no. 3 (2019). http://dx.doi.org/10.1103/physrevb.100.035305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ciuti, Cristiano, Gérald Bastard, and Iacopo Carusotto. "Quantum vacuum properties of the intersubband cavity polariton field." Physical Review B 72, no. 11 (2005). http://dx.doi.org/10.1103/physrevb.72.115303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

De Liberato, Simone, and Cristiano Ciuti. "Quantum theory of electron tunneling into intersubband cavity polariton states." Physical Review B 79, no. 7 (2009). http://dx.doi.org/10.1103/physrevb.79.075317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Khurgin, J. B., and H. C. Liu. "Stimulated polariton scattering in intersubband lasers: Role of motional narrowing." Physical Review B 74, no. 3 (2006). http://dx.doi.org/10.1103/physrevb.74.035317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

De Liberato, Simone, and Cristiano Ciuti. "Publisher's Note: Quantum theory of electron tunneling into intersubband cavity polariton states [Phys. Rev. B79, 075317 (2009)]." Physical Review B 79, no. 12 (2009). http://dx.doi.org/10.1103/physrevb.79.129901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kyriienko, O., and I. A. Shelykh. "Intersubband polaritons with spin-orbit interaction." Physical Review B 87, no. 7 (2013). http://dx.doi.org/10.1103/physrevb.87.075446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Todorov, Y., L. Tosetto, A. Delteil, et al. "Polaritonic spectroscopy of intersubband transitions." Physical Review B 86, no. 12 (2012). http://dx.doi.org/10.1103/physrevb.86.125314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Murphy, Francis J., Alexey O. Bak, Mary Matthews, Emmanuel Dupont, Hemmel Amrania, and Chris C. Phillips. "Linewidth-narrowing phenomena with intersubband cavity polaritons." Physical Review B 89, no. 20 (2014). http://dx.doi.org/10.1103/physrevb.89.205319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Manceau, J.-M., G. Biasiol, N. L. Tran, I. Carusotto, and R. Colombelli. "Immunity of intersubband polaritons to inhomogeneous broadening." Physical Review B 96, no. 23 (2017). http://dx.doi.org/10.1103/physrevb.96.235301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zanotto, Simone, Riccardo Degl'Innocenti, Ji-Hua Xu, Lucia Sorba, Alessandro Tredicucci, and Giorgio Biasiol. "Ultrafast optical bleaching of intersubband cavity polaritons." Physical Review B 86, no. 20 (2012). http://dx.doi.org/10.1103/physrevb.86.201302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Todorov, Yanko, and Carlo Sirtori. "Intersubband polaritons in the electrical dipole gauge." Physical Review B 85, no. 4 (2012). http://dx.doi.org/10.1103/physrevb.85.045304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

De Liberato, Simone, and Cristiano Ciuti. "Stimulated Scattering and Lasing of Intersubband Cavity Polaritons." Physical Review Letters 102, no. 13 (2009). http://dx.doi.org/10.1103/physrevlett.102.136403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Raab, Jürgen, Francesco P. Mezzapesa, Leonardo Viti, et al. "Ultrafast terahertz saturable absorbers using tailored intersubband polaritons." Nature Communications 11, no. 1 (2020). http://dx.doi.org/10.1038/s41467-020-18004-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zanotto, Simone, Federica Bianco, Lucia Sorba, Giorgio Biasiol, and Alessandro Tredicucci. "Saturation and bistability of defect-mode intersubband polaritons." Physical Review B 91, no. 8 (2015). http://dx.doi.org/10.1103/physrevb.91.085308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Załużny, M., and W. Zietkowski. "Intersubband cavity polaritons: The role of higher photonic modes." Physical Review B 80, no. 24 (2009). http://dx.doi.org/10.1103/physrevb.80.245301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!