Academic literature on the topic 'Intestinal brain microbiota axis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intestinal brain microbiota axis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Intestinal brain microbiota axis"

1

Zamudio Tiburcio, Alvaro, Héctor Bermudez Ruiz, Silverio Alonso Lopez, and Pedro Antonio Reyes Lopez. "Breast Cancer and Intestinal Microbiota Transplantation." Journal of Clinical Research and Clinical Trials 2, no. 3 (2023): 1–8. http://dx.doi.org/10.59657/2837-7184.brs.23.018.

Full text
Abstract:
Breast cancer has been studied relating it to the intestinal microbiota and its own microbiota. Giving a primary role to the dysbiosis that occurs in both the mammary gland and the intestine. Likewise, metabolic processes and immunological eventualities have been considered as determining factors; By the way, many of them are determined by the intestinal microbiota itself, which is given the deserved name of endocrine gland, because it acts at a distance, and it is not only the super-organ or the new organ, but the multiple studies have generated this honorable new consideration. We break down
APA, Harvard, Vancouver, ISO, and other styles
2

Góralczyk-Bińkowska, Aleksandra, Dagmara Szmajda-Krygier, and Elżbieta Kozłowska. "The Microbiota–Gut–Brain Axis in Psychiatric Disorders." International Journal of Molecular Sciences 23, no. 19 (2022): 11245. http://dx.doi.org/10.3390/ijms231911245.

Full text
Abstract:
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as “the microbiome–gut–brain axis”, is especially underlined. In this review, we discuss the link between the
APA, Harvard, Vancouver, ISO, and other styles
3

Kohl, Hannah M., Andrea R. Castillo, and Javier Ochoa-Repáraz. "The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?" Diseases 8, no. 3 (2020): 33. http://dx.doi.org/10.3390/diseases8030033.

Full text
Abstract:
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota–gut–brain axis connection in the context of MS, and microbiome sequence ana
APA, Harvard, Vancouver, ISO, and other styles
4

Blagonravova, A. S., E. A. Galova, I. Yu Shirokova, and D. A. Galova. "The gut-brain axis — clinical study results." Experimental and Clinical Gastroenterology, no. 6 (July 25, 2023): 5–13. http://dx.doi.org/10.31146/1682-8658-ecg-214-6-5-13.

Full text
Abstract:
The aim of the study was to investigate the intestinal microbiome in children with autism spectrum disorders (ASD). The study was observational, cohort, comparative. All the patients included in it were divided into 2 groups. The first (comparison group main) group (n=43) consisted of children preschool aged of 1 and 2 health groups; the second (n=38, main group) children with an established diagnosis of ASD. It was stated that children with ASD are characterized by the most frequent (p=0.001) detection of intestinal dysbiosis; the detection of significant disorders in the form of intestinal d
APA, Harvard, Vancouver, ISO, and other styles
5

Obrenovich, Mark, and V. Prakash Reddy. "Special Issue: Microbiota–Gut–Brain Axis." Microorganisms 10, no. 2 (2022): 309. http://dx.doi.org/10.3390/microorganisms10020309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Derovs, Aleksejs, Sniedze Laivacuma, and Angelika Krumina. "Targeting Microbiota: What Do We Know about It at Present?" Medicina 55, no. 8 (2019): 459. http://dx.doi.org/10.3390/medicina55080459.

Full text
Abstract:
The human microbiota is a variety of different microorganisms. The composition of microbiota varies from host to host, and it changes during the lifetime. It is known that microbiome may be changed because of a diet, bacteriophages and different processes for example, such as inflammation. Like all other areas of medicine, there is a continuous growth in the area of microbiology. Different microbes can reside in all sites of a human body, even in locations that were previously considered as sterile; for example, liver, pancreas, brain and adipose tissue. Presently one of the etiological factor
APA, Harvard, Vancouver, ISO, and other styles
7

Mohamadkhani, Ashraf. "Gut Microbiota and Fecal Metabolome Perturbation in Children with Autism Spectrum Disorder." Middle East Journal of Digestive Diseases 10, no. 4 (2018): 205–12. http://dx.doi.org/10.15171/mejdd.2018.112.

Full text
Abstract:
The brain-intestinal axis concept describes the communication between the intestinal microbiota as an ecosystem of a number of dynamic microorganisms and the brain. The composition of the microbial community of the human gut is important for human health by influencing the total metabolomic profile. In children with autism spectrum disorder (ASD), the composition of the fecal microbiota and their metabolic products has a different configuration of the healthy child. An imbalance in the metabolite derived from the microbiota in children with ASD affect brain development and social behavior. In
APA, Harvard, Vancouver, ISO, and other styles
8

Kharchenko, Yu V., H. I. Titov, D. H. Kryzhanovskyi, et al. "Stress and the Gut-Brain Axis." Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 7, no. 4 (2022): 137–46. http://dx.doi.org/10.26693/jmbs07.04.137.

Full text
Abstract:
The purpose of the review was to study the effects of stress on the gut microbiota. Results and discussion. The gut microbiota forms a complex microbial community that has a significant impact on human health. The composition of the microbiota varies from person to person, and it changes throughout life. It is known that the microbiome can be altered due to diet, various processes, such as inflammation and/or stress. Like all other areas of medicine, microbiology is constantly growing. The gut microbiota lives in a symbiotic relationship with the human host. It is now believed to interact with
APA, Harvard, Vancouver, ISO, and other styles
9

GIURGIU, Gheorghe, and Manole COJOCARU. "Natural Neuroimunomodulation in Coronavirus Infection." Annals of the Academy of Romanian Scientists Series on Biological Sciences 9, no. 2 (2020): 80–87. http://dx.doi.org/10.56082/annalsarscibio.2020.2.80.

Full text
Abstract:
Dysbiosis of the nasopharyngeal microbiome attracts dysbiosis of the intestinal microbiome and activation of the intestinal microbiome-brain axis. If the first sign of the disease is quickly intervened with the modulation of the activity of the microbiome, implicitly of the immune system (neuroimmunomodulation), the appearance of the disease is eliminated. There is the microbiome: buccal, nasal, intestinal, cardiac, cutaneous and even the microbiome in the brain with which Covid-19 interacts. When the evolution is complicated, it is necessary to intervene with drug treatment to support the aff
APA, Harvard, Vancouver, ISO, and other styles
10

Bogdanova, Natalia M., and Kira A. Kravtsova. "INTESTINAL MICROBIOME. EPILEPSY AND THE POSSIBILITY OF EXPANDING ALTERNATIVE THERAPIES." Medical Scientific Bulletin of Central Chernozemye (Naučno-medicinskij vestnik Centralʹnogo Černozemʹâ) 24, no. 3 (2023): 107–21. http://dx.doi.org/10.18499/1990-472x-2023-24-3-107-121.

Full text
Abstract:
The development of sequencing technology indicates a key regulatory role for the gut microbiota in several neurological disorders, including epilepsy. The microbiota-gut-brain axis refers to the bi-directional communication between the gut and the brain and regulates gut and central nervous system homeostasis through neural networks, neuroendocrine, immune and inflammatory pathways. The present review discusses the relationship between the gut microbiota and epilepsy, possible pathogenic mechanisms of epilepsy in terms of the microbiota-gut-brain axis, and alternative therapies targeting the g
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!