Academic literature on the topic 'Intrusion Detection Algorithm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intrusion Detection Algorithm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Intrusion Detection Algorithm"

1

Janagam, Anirudh, and Saddam Hossen. "Analysis of Network Intrusion Detection System with Machine Learning Algorithms (Deep Reinforcement Learning Algorithm)." Thesis, Blekinge Tekniska Högskola, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pillay, Manju Mohan. "Applying genetic algorithm techniques in network intrusion detection systems / Pillai, M.M." Thesis, North-West University, 2011. http://hdl.handle.net/10394/7030.

Full text
Abstract:
he Internet has grown to an essential media for human beings that facilitate communication, information searching, banking, marketing, online education and advertising among the numerous use cases that it offers. The benefits that are offered by the Internet are negated due to the fact that the intruders abuse and compromise the Internet through sophisticated cybercrimes and computer crimes. Cybercrime and computer crime has caused great havoc and panic in the Internet usage and network security. As a result it has become very important to protect the information residing in the computer systems that are connected especially to the networks, as it is the primary target for criminal activities. It is impossible to build a completely secure system as intruders find new methods to compromise the system. The least that can be done is to detect the intrusions; in–order to either fix the vulnerability or to avoid the intrusions from re–occurring. One such tool that detects intrusions is an Intrusion Detection System (IDS). However IDSs have their own challenges such as the incapability of detecting new intrusions and generating a multitude of false alarms. The focus of this research is to alleviate the current issues in IDSs by designing a Network IDS using Genetic Algorithms (GAs). The study thus aims at making the intrusion detection process robust by detecting unknown intrusions with less number of false alarms using GA principles. Further, a prototype of an IDS using GAs was developed to substantiate the study and evaluate the effectiveness, uniqueness and flexibility. The results showed that the GA–NIDS proved to be flexible and unique in accepting any format of rule as well as detecting both known and unknown intrusions.<br>Thesis (M.Ing. (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2012.
APA, Harvard, Vancouver, ISO, and other styles
3

Pentukar, Sai Kiran. "OCLEP+: One-Class Intrusion Detection Using Length of Patterns." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496147438710588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al, Tobi Amjad Mohamed. "Anomaly-based network intrusion detection enhancement by prediction threshold adaptation of binary classification models." Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/17050.

Full text
Abstract:
Network traffic exhibits a high level of variability over short periods of time. This variability impacts negatively on the performance (accuracy) of anomaly-based network Intrusion Detection Systems (IDS) that are built using predictive models in a batch-learning setup. This thesis investigates how adapting the discriminating threshold of model predictions, specifically to the evaluated traffic, improves the detection rates of these Intrusion Detection models. Specifically, this thesis studied the adaptability features of three well known Machine Learning algorithms: C5.0, Random Forest, and Support Vector Machine. The ability of these algorithms to adapt their prediction thresholds was assessed and analysed under different scenarios that simulated real world settings using the prospective sampling approach. A new dataset (STA2018) was generated for this thesis and used for the analysis. This thesis has demonstrated empirically the importance of threshold adaptation in improving the accuracy of detection models when training and evaluation (test) traffic have different statistical properties. Further investigation was undertaken to analyse the effects of feature selection and data balancing processes on a model's accuracy when evaluation traffic with different significant features were used. The effects of threshold adaptation on reducing the accuracy degradation of these models was statistically analysed. The results showed that, of the three compared algorithms, Random Forest was the most adaptable and had the highest detection rates. This thesis then extended the analysis to apply threshold adaptation on sampled traffic subsets, by using different sample sizes, sampling strategies and label error rates. This investigation showed the robustness of the Random Forest algorithm in identifying the best threshold. The Random Forest algorithm only needed a sample that was 0.05% of the original evaluation traffic to identify a discriminating threshold with an overall accuracy rate of nearly 90% of the optimal threshold.
APA, Harvard, Vancouver, ISO, and other styles
5

Thames, John Lane. "Advancing cyber security with a semantic path merger packet classification algorithm." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45872.

Full text
Abstract:
This dissertation investigates and introduces novel algorithms, theories, and supporting frameworks to significantly improve the growing problem of Internet security. A distributed firewall and active response architecture is introduced that enables any device within a cyber environment to participate in the active discovery and response of cyber attacks. A theory of semantic association systems is developed for the general problem of knowledge discovery in data. The theory of semantic association systems forms the basis of a novel semantic path merger packet classification algorithm. The theoretical aspects of the semantic path merger packet classification algorithm are investigated, and the algorithm's hardware-based implementation is evaluated along with comparative analysis versus content addressable memory. Experimental results show that the hardware implementation of the semantic path merger algorithm significantly outperforms content addressable memory in terms of energy consumption and operational timing.
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Jung Won. "Integrating artificial immune algorithms for intrusion detection." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Webster, Seth E. (Seth Emerson) 1975. "The development and analysis of intrusion detection algorithms." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kannan, Anand. "Performance evaluation of security mechanisms in Cloud Networks." Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99464.

Full text
Abstract:
Infrastructure as a Service (IaaS) is a cloud service provisioning model which largely focuses on data centre provisioning of computing and storage facilities. The networking aspects of IaaS beyond the data centre are a limiting factor preventing communication services that are sensitive to network characteristics from adopting this approach. Cloud networking is a new technology which integrates network provisioning with the existing cloud service provisioning models thereby completing the cloud computing picture by addressing the networking aspects. In cloud networking, shared network resources are virtualized, and provisioned to customers and end-users on-demand in an elastic fashion. This technology allows various kinds of optimization, e.g., reducing latency and network load. Further, this allows service providers to provision network performance guarantees as a part of their service offering. However, this new approach introduces new security challenges. Many of these security challenges are addressed in the CloNe security architecture. This thesis presents a set of potential techniques for securing different resource in a cloud network environment which are not addressed in the existing CloNe security architecture. The thesis begins with a holistic view of the Cloud networking, as described in the Scalable and Adaptive Internet Solutions (SAIL) project, along with its proposed architecture and security goals. This is followed by an overview of the problems that need to be solved and some of the different methods that can be applied to solve parts of the overall problem, specifically a comprehensive, tightly integrated, and multi-level security architecture, a key management algorithm to support the access control mechanism, and an intrusion detection mechanism. For each method or set of methods, the respective state of the art is presented. Additionally, experiments to understand the performance of these mechanisms are evaluated on a simple cloud network test bed. The proposed key management scheme uses a hierarchical key management approach that provides fast and secure key update when member join and member leave operations are carried out. Experiments show that the proposed key management scheme enhances the security and increases the availability and integrity. A newly proposed genetic algorithm based feature selection technique has been employed for effective feature selection. Fuzzy SVM has been used on the data set for effective classification. Experiments have shown that the proposed genetic based feature selection algorithm reduces the number of features and hence decreases the classification time, while improving detection accuracy of the fuzzy SVM classifier by minimizing the conflicting rules that may confuse the classifier. The main advantages of this intrusion detection system are the reduction in false positives and increased security.<br>Infrastructure as a Service (IaaS) är en Cloudtjänstmodell som huvudsakligen är inriktat på att tillhandahålla ett datacenter för behandling och lagring av data. Nätverksaspekterna av en cloudbaserad infrastruktur som en tjänst utanför datacentret utgör en begränsande faktor som förhindrar känsliga kommunikationstjänster från att anamma denna teknik. Cloudnätverk är en ny teknik som integrerar nätverkstillgång med befintliga cloudtjänstmodeller och därmed fullbordar föreställningen av cloud data genom att ta itu med nätverkaspekten.  I cloudnätverk virtualiseras delade nätverksresurser, de avsätts till kunder och slutanvändare vid efterfrågan på ett flexibelt sätt. Denna teknik tillåter olika typer av möjligheter, t.ex. att minska latens och belastningen på nätet. Vidare ger detta tjänsteleverantörer ett sätt att tillhandahålla garantier för nätverksprestandan som en del av deras tjänsteutbud. Men denna nya strategi introducerar nya säkerhetsutmaningar, exempelvis VM migration genom offentligt nätverk. Många av dessa säkerhetsutmaningar behandlas i CloNe’s Security Architecture. Denna rapport presenterar en rad av potentiella tekniker för att säkra olika resurser i en cloudbaserad nätverksmiljö som inte behandlas i den redan existerande CloNe Security Architecture. Rapporten inleds med en helhetssyn på cloudbaserad nätverk som beskrivs i Scalable and Adaptive Internet Solutions (SAIL)-projektet, tillsammans med dess föreslagna arkitektur och säkerhetsmål. Detta följs av en översikt över de problem som måste lösas och några av de olika metoder som kan tillämpas för att lösa delar av det övergripande problemet. Speciellt behandlas en omfattande och tätt integrerad multi-säkerhetsarkitektur, en nyckelhanteringsalgoritm som stödjer mekanismens åtkomstkontroll och en mekanism för intrångsdetektering. För varje metod eller för varje uppsättning av metoder, presenteras ståndpunkten för respektive teknik. Dessutom har experimenten för att förstå prestandan av dessa mekanismer utvärderats på testbädd av ett enkelt cloudnätverk. Den föreslagna nyckelhantering system använder en hierarkisk nyckelhantering strategi som ger snabb och säker viktig uppdatering när medlemmar ansluta sig till och medlemmarna lämnar utförs. Försöksresultat visar att den föreslagna nyckelhantering system ökar säkerheten och ökar tillgänglighet och integritet. En nyligen föreslagna genetisk algoritm baserad funktion valet teknik har använts för effektiv funktion val. Fuzzy SVM har använts på de uppgifter som för effektiv klassificering. Försök har visat att den föreslagna genetiska baserad funktion selekteringsalgoritmen minskar antalet funktioner och därmed minskar klassificering tiden, och samtidigt förbättra upptäckt noggrannhet fuzzy SVM klassificeraren genom att minimera de motstående regler som kan förvirra klassificeraren. De främsta fördelarna med detta intrångsdetekteringssystem är den minskning av falska positiva och ökad säkerhet.
APA, Harvard, Vancouver, ISO, and other styles
9

Ozbey, Halil. "A Genetic-based Intelligent Intrusion Detection System." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606636/index.pdf.

Full text
Abstract:
In this study we address the problem of detecting new types of intrusions to computer systems which cannot be handled by widely implemented knowledge-based mechanisms. The solutions offered by behavior-based prototypes either suffer low accuracy and low completeness or require use data eplaining abnormal behavior which actually is not available. Our aim is to develop an algorithm which can produce a satisfactory model of the target system&rsquo<br>s behavior in the absence of negative data. First, we design and develop an intelligent and behavior-based detection mechanism using genetic-based machine learning techniques with subsidies in the Bucket Brigade Algorithm. It classifies the possible system states to be normal and abnormal and interprets the abnormal state observations as evidences for the presence of an intrusion. Next we provide another algorithm which focuses on capturing normal behavior of the target system to detect intrusions again by identifying anomalies. A compact and highly complete rule set is generated by continuously inserting observed states as rules into the rule set and combining similar rule pairs in each step. Experiments conducted using the KDD-99 data set have produced fairly good results for both of the algorihtms.
APA, Harvard, Vancouver, ISO, and other styles
10

Wan, Tao. "IntruDetector, a software platform for testing network intrusion detection algorithms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ60258.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography