To see the other types of publications on this topic, follow the link: Inulinase immobilization.

Journal articles on the topic 'Inulinase immobilization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 47 journal articles for your research on the topic 'Inulinase immobilization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Holyavka, Marina G., Maxim S. Kondratyev, and Valery G. Artyukhov. "Adsorption immobilization of inulinase from Aspergillus ficuum and Kluyveromyces marxianus: a comparative aspect." Сорбционные и хроматографические процессы 23, no. 4 (2023): 578–91. http://dx.doi.org/10.17308/sorpchrom.2023.23/11567.

Full text
Abstract:
Virtual screening of ligands for the immobilization of fungal inulinase from Aspergillus ficuum and yeast inulinase from Kluyveromyces marxianus was performed using computer simulation methods. An algorithm has been developed to reveal the molecular mechanism of adsorption immobilization of inulinases using sequential (cascade) docking methods. The probable binding sites of polymeric matrices with enzyme molecules from various producers were visualized during adsorption immobilization. It has been established that the complexation of inulinase with charged carrier matrices occurs mainly due to
APA, Harvard, Vancouver, ISO, and other styles
2

EREMIA, MIHAELA CARMEN, and MARIA-MONICA PETRESCU. "Production, purification and immobilization of inulinases from Aspergillius species." Romanian Biotechnological Letters 26, no. 3 (2021): 2685–91. http://dx.doi.org/10.25083/rbl/26.3/2685-2691.

Full text
Abstract:
Inulinases are enzymes catalysing hydrolysis of polyfructosans to produce fructose or fructooligosaccharides; these properties have attracted interest of many researchers towards exploring various plant sources (agro food waste) as substrates. According to the literature, various microorganisms, such as fungi, yeast, bacteria, and actinomycetes, can synthesize inulinase. Producer microorganisms can be the micromycetes Aspergillus, Penicillium, Rhizopus and Fusarium, the yeast Kluyveromyces and the bacteria Clostridium thermosuccinogenes and Bacillus subtilis, using inulin, sucrose, fructose, l
APA, Harvard, Vancouver, ISO, and other styles
3

Saryono, Saryono, Henny Olivia R.M, Elvita Sepriana, Andi Dahliati, and Chainulfiffah A.M. "Amobilisasi Inulinase Aspergillus clavatus Gmn 11.3 Galur Lokal Indonesia dengan Matrik Karbon Aktif." Jurnal Natur Indonesia 10, no. 1 (2018): 31. http://dx.doi.org/10.31258/jnat.10.1.31-35.

Full text
Abstract:
Two types of inulinase are produced by Aspergillus clavatus Gmn 11.3 within the 3rd and 5th days of fermentation. The optimum condition of two types of immobilized inulinase is achieved using 20 grams of activated carbon, 200 meshes with protein adsorption of 96.71% and 96.19% respectively. Following immobilization of inulinase, incubation was carried out for 30 hours to hydrolyze inulin. After incubation, the proteins retained on the matrix are 66.96% of the 3 days fermentation enzymes and 37.36% for 5 days of fermentation enzyme.
APA, Harvard, Vancouver, ISO, and other styles
4

Catana, R., B. S. Ferreira, J. M. S. Cabral, and P. Fernandes. "Immobilization of inulinase for sucrose hydrolysis." Food Chemistry 91, no. 3 (2005): 517–20. http://dx.doi.org/10.1016/j.foodchem.2004.04.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garlet, Tais, Caroline Weber, Rodrigo Klaic, et al. "Carbon Nanotubes as Supports for Inulinase Immobilization." Molecules 19, no. 9 (2014): 14615–24. http://dx.doi.org/10.3390/molecules190914615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Missau, Juliano, Amir J. Scheid, Edson L. Foletto, Sergio L. Jahn, Marcio A. Mazutti, and Raquel C. Kuhn. "Immobilization of commercial inulinase on alginate–chitosan beads." Sustainable Chemical Processes 2, no. 1 (2014): 13. http://dx.doi.org/10.1186/2043-7129-2-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BAJPAI, PRATIMA, and ARGYRIOS MARGARITIS. "Immobilization of Kluyveromyces marxianus cells with inulinase in agar." Journal of General and Applied Microbiology 31, no. 4 (1985): 297–303. http://dx.doi.org/10.2323/jgam.31.297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elnashar, Magdy M. M., Enas N. Danial, and Ghada E. A. Awad. "Novel Carrier of Grafted Alginate for Covalent Immobilization of Inulinase." Industrial & Engineering Chemistry Research 48, no. 22 (2009): 9781–85. http://dx.doi.org/10.1021/ie9011276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kovaleva, T. A., M. G. Holyavka, and S. S. Bogdanova. "Inulinase Immobilization on Macroporous Anion-Exchange Resins by Different Methods." Bulletin of Experimental Biology and Medicine 148, no. 1 (2009): 39–41. http://dx.doi.org/10.1007/s10517-009-0623-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holyavka, Marina G., Maxim S. Kondratyev, Anatoly N. Lukin, Boris L. Agapov, and Valery G. Artyukhov. "Immobilization of inulinase on KU-2 ion-exchange resin matrix." International Journal of Biological Macromolecules 138 (October 2019): 681–92. http://dx.doi.org/10.1016/j.ijbiomac.2019.07.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Karimi, Mahsan, Isthier Chaudhury, Cheng Jianjun, et al. "Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles." Journal of Molecular Catalysis B: Enzymatic 104 (June 2014): 48–55. http://dx.doi.org/10.1016/j.molcatb.2014.01.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Holyavka, M. G., M. S. Kondratyev, V. V. Terentyev, et al. "The molecular mechanism of adsorption immobilization of inulinase on polymer matrices." Biophysics 62, no. 1 (2017): 5–11. http://dx.doi.org/10.1134/s0006350917010109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mohamed, Tarek M., Soad M. Abu El-Souod, Ehab M. Ali, Mohammed O. El-Badry, Mai M. El-Keiy, and Aly Sayed Aly. "Immobilization and characterization of inulinase from Ulocladium atrum on nonwoven fabrics." Journal of Biosciences 39, no. 5 (2014): 785–93. http://dx.doi.org/10.1007/s12038-014-9477-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Awad, Ghada E. A., Hala R. Wehaidy, Abeer A. Abd El Aty, and Mohamed E. Hassan. "A novel alginate–CMC gel beads for efficient covalent inulinase immobilization." Colloid and Polymer Science 295, no. 3 (2017): 495–506. http://dx.doi.org/10.1007/s00396-017-4024-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

de Araujo Ribeiro, Geise Camila, Pedro Fernandes, Dayse Alessandra Almeida Silva, Hugo Neves Brandão, and Sandra Aparecida de Assis. "Inulinase from Rhodotorula mucilaginosa: immobilization and application in the production of fructooligosaccharides." Food Science and Biotechnology 30, no. 7 (2021): 959–69. http://dx.doi.org/10.1007/s10068-021-00931-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zemolin, Gabriela P., Michele Gazoni, Giovani L. Zabot, et al. "Immobilization of inulinase obtained by solid-state fermentation using spray-drying technology." Biocatalysis and Biotransformation 30, no. 4 (2012): 409–16. http://dx.doi.org/10.3109/10242422.2012.715635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kondratyev, Maxim S., Marina G. Kholyavka, Artem V. Kabanov, Anatoly A. Sorokin, Alexander A. Samchenko, and Valery G. Artyukhov. "195In silicodesign and virtual screening of inulinase immobilization ligands with highest affinity." Journal of Biomolecular Structure and Dynamics 33, sup1 (2015): 128–29. http://dx.doi.org/10.1080/07391102.2015.1032832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ribeiro, Geise Camila de Araujo, Pedro Fernandes, and Sandra Aparecida de Assis. "Production, characterization, and immobilization of inulinase produced by Pseudozyma sp. (CCMB 306)." Chemical Engineering Communications 205, no. 8 (2018): 1060–68. http://dx.doi.org/10.1080/00986445.2018.1430575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Karimi, Mahsan, Mehran Habibi-Rezaei, Mohammad Safari, et al. "Immobilization of endo-inulinase on poly-d-lysine coated CaCO3 micro-particles." Food Research International 66 (December 2014): 485–92. http://dx.doi.org/10.1016/j.foodres.2014.08.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Holyavka, M. G., M. S. Kondratyev, A. A. Samchenko, A. V. Kabanov, V. M. Komarov, and V. G. Artyukhov. "In silico design of high-affinity ligands for the immobilization of inulinase." Computers in Biology and Medicine 71 (April 2016): 198–204. http://dx.doi.org/10.1016/j.compbiomed.2016.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Singh, Ram Sarup, Kanika Chauhan, Navneet Kaur, and Naveen Kumar. "Inulinase immobilization onto glutaraldehyde activated duolite XAD for the production of fructose from inulin." Biocatalysis and Agricultural Biotechnology 27 (August 2020): 101699. http://dx.doi.org/10.1016/j.bcab.2020.101699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Richetti, Aline, Cristiane B. Munaretto, Lindomar A. Lerin, et al. "Immobilization of inulinase from Kluyveromyces marxianus NRRL Y-7571 using modified sodium alginate beads." Bioprocess and Biosystems Engineering 35, no. 3 (2011): 383–88. http://dx.doi.org/10.1007/s00449-011-0576-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abaide, Ederson Rossi, Chayene Gonçalves Anchieta, Vitória Segabinazzi Foletto, et al. "Production of Copper and Cobalt Aluminate Spinels and Their Application As Supports for Inulinase Immobilization." Materials Research 18, no. 5 (2015): 1062–69. http://dx.doi.org/10.1590/1516-1439.031415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Coghetto, Chaline C., Robison P. Scherer, Marceli F. Silva, et al. "Natural montmorillonite as support for the immobilization of inulinase from Kluyveromyces marxianus NRRL Y-7571." Biocatalysis and Agricultural Biotechnology 1, no. 4 (2012): 284–89. http://dx.doi.org/10.1016/j.bcab.2012.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rawat, Hemant Kumar, Hemant Soni, Rahul Kumar Suryawanshi, Ritumbhara Choukade, Bhanu Pratap Prajapati, and Naveen Kango. "Exo‐inulinase production from Aspergillus fumigatus NFCCI 2426: purification, characterization, and immobilization for continuous fructose production." Journal of Food Science 86, no. 5 (2021): 1778–90. http://dx.doi.org/10.1111/1750-3841.15681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Singh, Ram Sarup, Kanika Chauhan, and John F. Kennedy. "Immobilization of fungal inulinase on hetero-functionalized carbon nanofibers for the production of fructose from inulin." LWT 116 (December 2019): 108569. http://dx.doi.org/10.1016/j.lwt.2019.108569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Altunbaş, Canan, Murat Uygun, Deniz Aktaş Uygun, Sinan Akgöl, and Adil Denizli. "Immobilization of Inulinase on Concanavalin A-Attached Super Macroporous Cryogel for Production of High-Fructose Syrup." Applied Biochemistry and Biotechnology 170, no. 8 (2013): 1909–21. http://dx.doi.org/10.1007/s12010-013-0322-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Singh, R. S., R. P. Singh, and J. F. Kennedy. "Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system." International Journal of Biological Macromolecules 95 (February 2017): 87–93. http://dx.doi.org/10.1016/j.ijbiomac.2016.11.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Trytek, Mariusz, Jan Fiedurek, Beata Podkościelna, Barbara Gawdzik, and Marcin Skowronek. "An efficient method for the immobilization of inulinase using new types of polymers containing epoxy groups." Journal of Industrial Microbiology & Biotechnology 42, no. 7 (2015): 985–96. http://dx.doi.org/10.1007/s10295-015-1619-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Singh, Ram Sarup, and Kanika Chauhan. "Immobilization of Inulinase on Aminated Multiwalled Carbon Nanotubes by Glutaraldehyde Cross-Linking for the Production of Fructose." Catalysis Letters 149, no. 10 (2019): 2718–27. http://dx.doi.org/10.1007/s10562-019-02743-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yewale, Tatyaso, Rekha S. Singhal, and Alankar A. Vaidya. "Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis." Biocatalysis and Agricultural Biotechnology 2, no. 2 (2013): 96–101. http://dx.doi.org/10.1016/j.bcab.2013.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Severo, Eric da Cruz, Ederson Rossi Abaide, Chayene Gonçalves Anchieta, et al. "Preparation of Zinc Tungstate (ZnWO4) Particles by Solvo-hydrothermal Technique and their Application as Support for Inulinase Immobilization." Materials Research 19, no. 4 (2016): 781–85. http://dx.doi.org/10.1590/1980-5373-mr-2015-0100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Karimi, Mahsan, Mehran Habibi-Rezaei, Keramatollah Rezaei, Ali Akbar Moosavi-Movahedi, and Jozef Kokini. "Immobilization of inulinase from Aspergillus niger on octadecyl substituted nanoporous silica: Inulin hydrolysis in a continuous mode operation." Biocatalysis and Agricultural Biotechnology 7 (July 2016): 174–80. http://dx.doi.org/10.1016/j.bcab.2016.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bajpai, Pratima, and Argyrios Margaritis. "Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: 1. Preparation and enzymatic properties." Enzyme and Microbial Technology 7, no. 8 (1985): 373–76. http://dx.doi.org/10.1016/0141-0229(85)90125-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Temkov, Mishela, Aleksandar Petrovski, Emilija Gjorgieva, et al. "Inulinase immobilization on polyethylene glycol/polypyrrole multiwall carbon nanotubes producing a catalyst with enhanced thermal and operational stability." Engineering in Life Sciences 19, no. 9 (2019): 617–30. http://dx.doi.org/10.1002/elsc.201900021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bajpai, Pratima, and Argyrios Margaritis. "Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: 2. Application for high fructose syrup production." Enzyme and Microbial Technology 7, no. 9 (1985): 459–61. http://dx.doi.org/10.1016/0141-0229(85)90048-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Garuba, Emmanuel O., Abiodun, and A. Onilude. "Immobilization of thermostable exo-inulinase from mutant thermophilic Aspergillus tamarii-U4 using kaolin clay and its application in inulin hydrolysis." Journal of Genetic Engineering and Biotechnology 16, no. 2 (2018): 341–46. http://dx.doi.org/10.1016/j.jgeb.2018.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ettalibi, Moussa, and Jacques C. Baratti. "Immobilization of Aspergillus ficuum Inulinases on Porous Glass." Biocatalysis 5, no. 3 (1992): 175–82. http://dx.doi.org/10.3109/10242429209014865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Banerjee, Debolina, Puja Bag, Ranjana Chowdhury, and Pinaki Bhattacharya. "SUSTAINABILITY OF THE PROBIOTIC LACTOBACILLUS CASEI IN FORTIFIED INDIAN MILK CAKES UNDER DIFFERENT PRESERVATION CONDITIONS-EFFECTS OF CO-IMMOBILIZATION OF L. CASEI AND COMMERCIAL PREBIOTIC INULIN (CHICORY BASED) AND MILLET INULIN." International Journal of Pharmacy and Pharmaceutical Sciences 9, no. 1 (2016): 152. http://dx.doi.org/10.22159/ijpps.2017v9i1.15305.

Full text
Abstract:
<p><strong>Objective: </strong>The objective of the present article is to identify the most suitable Indian millet inulin for the growth of probiotic <em>Lactobacillus casei</em> and to evaluate the effects of the fortification vectors (probiotics and probiotic-prebiotic combination in immobilized conditions) and immobilization methods on the sustainability of <em>L. casei</em> in a fortified Indian sweet (milk cake) preserved under different conditions.</p><p><strong>Methods: </strong>Inulin was extracted from pearl, finger and
APA, Harvard, Vancouver, ISO, and other styles
40

Kabaivanova, Lyudmila, Adriana Goushterova, Mariya Brazkova, Petar Grozdanov, Elena Chorukova, and Albert Krastanov. "PARAMETERS OPTIMIZATION FOR INCREASED INTRACELLULAR INULINASE ACTIVITY OF A YEAST STRAIN." Ecological Engineering and Environment Protection, March 20, 2019, 54–61. http://dx.doi.org/10.32006/eeep.2019.1.5461.

Full text
Abstract:
This study reveals the selection of a yeast strain, possessing inulinase activity and finding the optimal conditions of cultivation. Intra- and extracellular activity assay was performed after cultivation on media, containing inulin as a sole source of carbon. Optimization of the cultivation conditions was carried out for establishing the favorable conditions for biosynthesis of inulinase. Modifying the physicochemical and nutritional parameters of a cultivation process lead to major improvement of the enzyme activity. Highest intra- and extracellular inulinase activity was registered when 1.5
APA, Harvard, Vancouver, ISO, and other styles
41

Kabaivanova, Lyudmila, Adriana Goushterova, Mariya Brazkova, Petar Grozdanov, Elena Chorukova, and Albert Krastanov. "PARAMETERS OPTIMIZATION FOR INCREASED INTRACELLULAR INULINASE ACTIVITY OF A YEAST STRAIN." Ecological Engineering and Environment Protection, March 20, 2019, 62–70. http://dx.doi.org/10.32006/eeep.2019.1.6270.

Full text
Abstract:
This study reveals the selection of a yeast strain, possessing inulinase activity and finding the optimal conditions of cultivation. Intra- and extracellular activity assay was performed after cultivation on media, containing inulin as a sole source of carbon. Optimization of the cultivation conditions was carried out for establishing the favorable conditions for biosynthesis of inulinase. Modifying the physicochemical and nutritional parameters of a cultivation process lead to major improvement of the enzyme activity. Highest intra- and extracellular inulinase activity was registered when 1.5
APA, Harvard, Vancouver, ISO, and other styles
42

"APPLICATION OF SUPER-CROSSLINKED POLYMERS AS CARRIERS OF HETEROGENEOUS BIOCATALYSTS FOR INULINHYDROLYSIS REACTION." ChemChemTech 65, no. 8 (2022): 48–54. http://dx.doi.org/10.6060/ivkkt.20226508.6559.

Full text
Abstract:
n this work the study of adsorption immobilization of inulinase on super-crosslinked macroporous sorbents based on styrene and divinylbenzene: low-base anion exchanger A100, high-base anion exchanger A500R, strong acid cation exchanger C100H was carried out. The influence of the duration of the sorption process, the value of the concentration of hydrogen ions and the concentration of protein in solution on the amount of immobilized enzyme and the activity of the obtained heterogeneous biocatalysts is considered. It was revealed that adsorption reaches its max-imum value on average after 4 h at
APA, Harvard, Vancouver, ISO, and other styles
43

Homa, Torabizadeh, and Mikani Mohaddeseh. "Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production." July 4, 2017. https://doi.org/10.5281/zenodo.1131958.

Full text
Abstract:
Inulinase from <em>Aspergillus niger</em> was covalently immobilized on magnetic nanoparticles (MNPs/Fe<sub>3</sub>O<sub>4</sub>) covered with soy protein isolate (SPI/Fe<sub>3</sub>O<sub>4</sub>) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity.
APA, Harvard, Vancouver, ISO, and other styles
44

Zheng, Dong, Yunlong Zheng, Junjie Tan, Zhenjie Zhang, He Huang, and Yao Chen. "Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-49831-8.

Full text
Abstract:
AbstractCo-immobilization of cells and enzymes is often essential for the cascade biocatalytic processes of industrial-scale feasibility but remains a vast challenge. Herein, we create a facile co-immobilization platform integrating enzymes and cells in covalent organic frameworks (COFs) to realize the highly efficient cascade of inulinase and E. coli for bioconversion of natural products. Enzymes can be uniformly immobilized in the COF armor, which coats on the cell surface to produce cascade biocatalysts with high efficiency, stability and recyclability. Furthermore, this one-pot in situ syn
APA, Harvard, Vancouver, ISO, and other styles
45

Wahba, Marwa I., Shireen A. A. Saleh, Faten A. Mostafa, and Walaa A. Abdel Wahab. "Immobilization impact of GEG-Alg-SPI as a carrier for Aspergillus niger MK981235 inulinase: Kinetics, thermodynamics, and application." Bioresource Technology Reports, June 2022, 101099. http://dx.doi.org/10.1016/j.biteb.2022.101099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

da Silva, Wallace Ribeiro, Camila Fernanda de Aquino Luna, Joyce Gueiros Wanderley Siqueira, Jorge Vinícius Fernandes Lima Cavalcanti, Rodrigo Lira de Oliveira, and Tatiana Souza Porto. "Immobilization of Aspergillus terreus URM4658 inulinase in calcium alginate beads, evaluation of their biochemical characteristics and kinetic/thermodynamic parameters, and application on inulin hydrolysis." Preparative Biochemistry & Biotechnology, April 21, 2025, 1–10. https://doi.org/10.1080/10826068.2025.2486424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Basso, Alessandra, Patrizia Spizzo, Valerio Ferrario, et al. "Endo- and exo-inulinases: Enzyme-substrate interaction and rational immobilization." Biotechnology Progress, 2009, NA. http://dx.doi.org/10.1002/btpr.334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!