Academic literature on the topic 'Invariant de Makar-Limanov'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Invariant de Makar-Limanov.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Invariant de Makar-Limanov"

1

Crachiola, Anthony, and Stefan Maubach. "The Derksen invariant vs. the Makar-Limanov invariant." Proceedings of the American Mathematical Society 131, no. 11 (2003): 3365–69. http://dx.doi.org/10.1090/s0002-9939-03-07155-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Daigle, Daniel. "Affine surfaces with trivial Makar-Limanov invariant." Journal of Algebra 319, no. 8 (2008): 3100–3111. http://dx.doi.org/10.1016/j.jalgebra.2007.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Finston, David, and Stefan Maubach. "Constructing (Almost) Rigid Rings and a UFD Having Infinitely Generated Derksen and Makar-Limanov Invariants." Canadian Mathematical Bulletin 53, no. 1 (2010): 77–86. http://dx.doi.org/10.4153/cmb-2010-017-8.

Full text
Abstract:
AbstractAn example is given of a UFD which has an infinitely generated Derksen invariant. The ring is “almost rigid” meaning that the Derksen invariant is equal to the Makar-Limanov invariant. Techniques to show that a ring is (almost) rigid are discussed, among which is a generalization of Mason's ABC-theorem.
APA, Harvard, Vancouver, ISO, and other styles
4

Daigle, Daniel, and Ratnadha Kolhatkar. "Complete intersection surfaces with trivial Makar-Limanov invariant." Journal of Algebra 350, no. 1 (2012): 1–35. http://dx.doi.org/10.1016/j.jalgebra.2011.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Daigle, Daniel, та Peter Russell. "On Log ℚ-Homology Planes and Weighted Projective Planes". Canadian Journal of Mathematics 56, № 6 (2004): 1145–89. http://dx.doi.org/10.4153/cjm-2004-051-9.

Full text
Abstract:
AbstractWe classify normal affine surfaces with trivial Makar-Limanov invariant and finite Picard group of the smooth locus, realizing them as open subsets of weighted projective planes. We also show that such a surface admits, up to conjugacy, one or two Ga-actions.
APA, Harvard, Vancouver, ISO, and other styles
6

Gurjar, R. V., K. Masuda, M. Miyanishi, and P. Russell. "Affine Lines on Affine Surfaces and the Makar–Limanov Invariant." Canadian Journal of Mathematics 60, no. 1 (2008): 109–39. http://dx.doi.org/10.4153/cjm-2008-005-8.

Full text
Abstract:
AbstractA smooth affine surface X defined over the complex field C is an ML0 surface if the Makar– Limanov invariant ML(X) is trivial. In this paper we study the topology and geometry of ML0 surfaces. Of particular interest is the question: Is every curve C in X which is isomorphic to the affine line a fiber component of an A1-fibration on X? We shall show that the answer is affirmative if the Picard number ρ(X) = 0, but negative in case ρ(X) ≥ 1. We shall also study the ascent and descent of the ML0 property under proper maps.
APA, Harvard, Vancouver, ISO, and other styles
7

Dubouloz, Adrien. "Completions of normal affine surfaces with a trivial Makar-Limanov invariant." Michigan Mathematical Journal 52, no. 2 (2004): 289–308. http://dx.doi.org/10.1307/mmj/1091112077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dubouloz, Adrien. "The cylinder over the Koras–Russell cubic threefold has a trivial Makar-Limanov invariant." Transformation Groups 14, no. 3 (2009): 531–39. http://dx.doi.org/10.1007/s00031-009-9051-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dubouloz, Adrien, and Alvaro Liendo. "Rationally integrable vector fields and rational additive group actions." International Journal of Mathematics 27, no. 08 (2016): 1650060. http://dx.doi.org/10.1142/s0129167x16500609.

Full text
Abstract:
We characterize rational actions of the additive group on algebraic varieties defined over a field of characteristic zero in terms of a suitable integrability property of their associated velocity vector fields. This extends the classical correspondence between regular actions of the additive group on affine algebraic varieties and the so-called locally nilpotent derivations of their coordinate rings. Our results lead in particular to a complete characterization of regular additive group actions on semi-affine varieties in terms of their associated vector fields. Among other applications, we r
APA, Harvard, Vancouver, ISO, and other styles
10

Kaygorodov, Ivan, Samuel A. Lopes, and Farukh Mashurov. "Actions of the additive group Ga on certain noncommutative deformations of the plane." Communications in Mathematics 29, no. 2 (2021): 269–79. http://dx.doi.org/10.2478/cm-2021-0024.

Full text
Abstract:
Abstract We connect the theorems of Rentschler [18] and Dixmier [10] on locally nilpotent derivations and automorphisms of the polynomial ring A 0 and of the Weyl algebra A 1, both over a field of characteristic zero, by establishing the same type of results for the family of algebras A h = 〈 x , y | y x − x y = h ( x ) 〉 , {A_h} = \left\langle {x,y|yx - xy = h\left( x \right)} \right\rangle , , where h is an arbitrary polynomial in x. In the second part of the paper we consider a field 𝔽 of prime characteristic and study 𝔽[t]-comodule algebra structures on Ah . We also compute the Makar-Liman
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Invariant de Makar-Limanov"

1

Diniz, Renato dos Santos. "Invariante de Makar-Limanov de certas hipersuperfícies algébricas." Universidade Federal da Paraí­ba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/7384.

Full text
Abstract:
Made available in DSpace on 2015-05-15T11:46:07Z (GMT). No. of bitstreams: 1 ArquivoTotalRenato.pdf: 567179 bytes, checksum: f04648306a82585dcc8b5e2b63f00126 (MD5) Previous issue date: 2014-08-29<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>The Makar-Limanov invariant ML(B) of an a-ne k-algebra B (with k a -eld, which will be typically assumed to be of characteristic zero) is a very important invariant, defined in terms of the kernels of suitable derivations of B called locally nilpotent derivations. The theme has connections to various central problems in Commutative Al
APA, Harvard, Vancouver, ISO, and other styles
2

Liendo, Alvaro. "T-variétés affines : actions du groupe additif et singularités." Phd thesis, Université de Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00592274.

Full text
Abstract:
Une T-variété est une variété algébrique munie d'une action effective d'un tore algébrique T. Cette thèse est consacrée à l'étude de deux aspects des T-variétés normales affines : les actions du groupe additif et la caractérisation des singularités. Soit X = Spec A une T-variété affine normale et soit D une dérivation homogène localement nilpotente de l'algèbre affine intègre Z^n-graduée A, alors D engendre une action du groupe additif dans X. On donne une classification complète des couples (X, D) dans trois cas : pour les variétés toriques, dans le cas de complexité un, et dans le cas où D e
APA, Harvard, Vancouver, ISO, and other styles
3

Liendo, Alvaro. "T-variétés affines : actions du groupe additif et singularités." Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENM015.

Full text
Abstract:
Une T-variété est une variété algébrique munie d'une action effective d'un tore algébrique T. Cette thèse est consacrée à l'étude de deux aspects des T -variétés normales affines: les actions du groupe additif et la caractérisation des singularités. Soit X=spec A une T-variété affine normale et soit D une dérivation homogène localement nilpotente de l'algèbre affine intègre Z"n-gradué A, alors D engendre une action du groupe additif dans X. On donne une classification complète des couples (X,D) dans trois cas: pour les variétés toriques, dans le cas de complexité un, et dans le cas où D est de
APA, Harvard, Vancouver, ISO, and other styles
4

DUBOULOZ, Adrien. "Sur une classe de schémas avec actions de fibrés en droites." Phd thesis, 2004. http://tel.archives-ouvertes.fr/tel-00007733.

Full text
Abstract:
Pour une variété affine S définie sur un corps k de caracteristique nulle, il y a une correspondence bijective entre les actions algébriques du groupe additif k+=(k,+) sur S et les dérivations localement nilpotentes de l'algèb re des fonctions régulières sur S. Dans cette thèse, nous transposons cette équi valence entre actions et dérivations à la situation plus générale où π:S → X est un schéma de base X donnée, admettant des actions d'un fibré en droites p:L → X sur X. Nous étudions en détail une sous-classe de schémas S de ce type, ayant la propriété d'être muni d'une structure de fibré pri
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Invariant de Makar-Limanov"

1

Freudenburg, Gene. "Makar-Limanov and Derksen Invariants." In Algebraic Theory of Locally Nilpotent Derivations. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55350-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popov, Vladimir. "On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties." In CRM Proceedings and Lecture Notes. American Mathematical Society, 2011. http://dx.doi.org/10.1090/crmp/054/17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!