Academic literature on the topic 'Invariant subspaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Invariant subspaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Invariant subspaces"
IZUCHI, KEI JI, KOU HEI IZUCHI, and YUKO IZUCHI. "SPLITTING INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK." Journal of the Australian Mathematical Society 102, no. 2 (May 12, 2016): 205–23. http://dx.doi.org/10.1017/s1446788716000203.
Full textWang, Guo-Hua, Jia-Fu Pang, Yong-Yang Jin, and Bo Ren. "Invariant Subspaces of Short Pulse-Type Equations and Reductions." Symmetry 16, no. 6 (June 18, 2024): 760. http://dx.doi.org/10.3390/sym16060760.
Full textASSADI, AMANOLLAH, MOHAMAD ALI FARZANEH, and HAJI MOHAMMAD MOHAMMADINEJAD. "ON THE DECOMPOSITION OF OPERATORS WITH SEVERAL ALMOST-INVARIANT SUBSPACES." Bulletin of the Australian Mathematical Society 99, no. 2 (January 4, 2019): 274–83. http://dx.doi.org/10.1017/s0004972718001363.
Full textBose, Snehasish, P. Muthukumar, and Jaydeb Sarkar. "Beurling type invariant subspaces of composition operators." Journal of Operator Theory 86, no. 2 (November 15, 2021): 425–38. http://dx.doi.org/10.7900/jot.2020may15.2286.
Full textLiu, Junfeng. "On Invariant Subspaces for the Shift Operator." Symmetry 11, no. 6 (June 1, 2019): 743. http://dx.doi.org/10.3390/sym11060743.
Full textKrivosheev, A. S., and O. A. Krivosheeva. "Invariant Subspaces in Unbounded Domains." Issues of Analysis 28, no. 3 (November 2021): 91–107. http://dx.doi.org/10.15393/j3.art.2021.10870.
Full textSzekelyhidi, Laszlo, and Seyyed Mohammad Tabatabaie. "Invariant Subspaces on KPC-Hypergroups." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 1 (March 25, 2019): 122–30. http://dx.doi.org/10.15407/mag15.01.122.
Full textForouzanfar, AM, S. Khorshidvandpour, and Z. Bahmani. "Uniformly invariant normed spaces." BIBECHANA 10 (October 31, 2013): 31–33. http://dx.doi.org/10.3126/bibechana.v10i0.7555.
Full textFernández-Morales, H. R., A. G. García, M. A. Hernández-Medina, and M. J. Muñoz-Bouzo. "Generalized sampling: From shift-invariant to U-invariant spaces." Analysis and Applications 13, no. 03 (March 5, 2015): 303–29. http://dx.doi.org/10.1142/s0219530514500213.
Full textGuo, Kunyu, and Dechao Zheng. "Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators." Journal of Functional Analysis 187, no. 2 (December 2001): 308–42. http://dx.doi.org/10.1006/jfan.2001.3820.
Full textDissertations / Theses on the topic "Invariant subspaces"
Adams, Lynn I. "Classifying Triply-Invariant Subspaces." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1185565121.
Full textMahvidi, Ali. "Invariant subspaces of composition operators." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0020/NQ45739.pdf.
Full textPOSTERNAK, REGINA. "INVARIANT SUBSPACES FOR HIPONORMAL OPERATORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3338@1.
Full textO problema do subespaço invariante consiste na seguinte pergunta: será que todo operador (i.e., transformação linear limitada) atuando em um espaço de Hilbert separável (complexo de dimensão infinita) tem subespaço invariante nãotrivial? Este é, possivelmente, o mais importante problema em aberto na teoria de operadores. Em particular, o problema do subespaço invariante permanece em aberto (pelo menos até a presente data) para operadores hiponormais, ou seja, ainda não se sabe se todo operador hiponormal (atuando em um espaço de Hilbert complexo separável) tem subespaço invariante não-trivial. O objetivo desta dissertação é apresentar, de maneira unificada, um levantamento sobre subespaços invariantes para operadores hiponormais. Inicialmente, o problema do subespaço invariante é abordado em sua forma geral (sem restrição a classes de operadores) onde diversos resultados clássicos são expostos. Em seguida, o problema específico de se encontrar subespaços invariantes para operadores hiponormais é apresentado de maneira sistemática. Em particular, investigamos propriedades do espectro de um operador hiponormal que não tenha subespaço invariante não trivial.
The invariant subspace problem is: does every operator acting on an infinite-dimensional complex separable Hilbert space have a nontrivial invariant subspace? This is, probably, the most important open question in the operator theory. In particular, the problem of the invariant subspace remains open (at least until now) for hyponormal operators, that is, it is still unknown whether every hyponormal operator (on a complex separable Hilbert space) has a nontrivial invariant subspace. The purpose of these dissertation is to present, in an unified way, a survey on invariant subspaces for hyponormal operators. At first, the invariant subspace problem is posed in a general form (without any restriction on the operator classes), where some of classical results are discussed. Secondly, the specific problem of finding invariant subspaces for hyponormal operators is presented in a systematic way and, in particular, we show some characteristics of the spectrum of a hyponormal operator with no nontrivial invariant subspace.
Mehrmann, Volker, and Hongguo Xu. "Lagrangian invariant subspaces of Hamiltonian matrices." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501133.
Full textWojtasinski, Justyna Agata. "Classifying Triply-Invariant Subspaces for p=3." Akron, OH : University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1209134757.
Full text"May, 2008." Title from electronic thesis title page (viewed 07/12/2008) Advisor, Jeffrey M. Riedl; Faculty Readers, Ethel Wheland, Stuart Clay; Department Chair, Joseph Wilder; Dean of the College, Ronald F. Levant; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Smith, Rachael Caroline. "Spectral densities and invariant subspaces of operators." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432300.
Full textSchulze, Bert-Wolfgang, Anton Savin, and Boris Sternin. "Elliptic operators in subspaces and the eta invariant." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2549/.
Full textLücking, Simon [Verfasser]. "The Daugavet Property and Translation-Invariant Subspaces / Simon Lücking." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1054163154/34.
Full textJiang, Jiaosheng. "Bounded operators without invariant subspaces on certain Banach spaces." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037506.
Full textHayakawa, Yoshikazu, and D. ŠILJAK Dragoslav. "On almost invariant subspaces of structural systems and decentralized control." IEEE, 1988. http://hdl.handle.net/2237/6854.
Full textBooks on the topic "Invariant subspaces"
Radjavi, Heydar. Invariant subspaces. 2nd ed. Mineola, N.Y: Dover Publications, 2003.
Find full textHenry, Helson, Yadav B. S. 1931-, Singh Udita Narayana 1917-1989, University of Delhi. Dept. of Mathematics., and International Conference on "Invariant Subspaces and Allied Topics" (1986 : Dept. of Mathematics, University of Delhi), eds. Invariant subspaces and allied topics. New Delhi: Narosa Pub. House, 1990.
Find full textMashreghi, Javad, Emmanuel Fricain, and William Ross, eds. Invariant Subspaces of the Shift Operator. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/conm/638.
Full text1929-, Lancaster Peter, and Rodman L, eds. Invariant subspaces of matrices with applications. New York: Wiley, 1986.
Find full textMacDonald, Gordon Wilson. Invariant subspaces for weighted translation operators. Toronto: [s.n.], 1989.
Find full textChalendar, Isabelle. Modern approaches to the invariant-subspace problem. Cambridge, UK: Cambridge University Press, 2011.
Find full textDemmel, James Weldon. Three methods for refining estimates of invariant subspaces. New York: Courant Institute of Mathematical Sciences, New York University, 1985.
Find full textDouglas, R. G., C. M. Pearcy, B. Sz.-Nagy, F. H. Vasilescu, Dan Voiculescu, and Gr Arsene, eds. Advances in Invariant Subspaces and Other Results of Operator Theory. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-7698-8.
Full textCiprian, Foiaş, Pearcy Carl M. 1935-, and Conference Board of the Mathematical Sciences., eds. Dual algebras with applications to invariant subspaces and dilation theory. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.
Find full textMashreghi, Javad, Emmanuel Fricain, and William T. Ross. Invariant subspaces of the shift operator: CRM Workshop, Invariant Subspaces of the Shift Operator, August 26-30, 2013, Centre de Recherches Mathematiques, Universite' de Montreal, Montreal. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBook chapters on the topic "Invariant subspaces"
Hedenmalm, Haakan, Boris Korenblum, and Kehe Zhu. "Invariant Subspaces." In Graduate Texts in Mathematics, 176–89. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0497-8_6.
Full textNikol’skiĭ, Nikolaĭ K. "Invariant Subspaces." In Grundlehren der mathematischen Wissenschaften, 10–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70151-1_2.
Full textKubrusly, Carlos S. "Invariant Subspaces." In Hilbert Space Operators, 1–11. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-2064-0_1.
Full textFarenick, Douglas R. "Invariant Subspaces." In Universitext, 77–116. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0097-7_3.
Full textKatznelson, Yitzhak, and Yonatan Katznelson. "Invariant subspaces." In The Student Mathematical Library, 85–101. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/stml/044/05.
Full textAbramovich, Y., and C. Aliprantis. "Invariant subspaces." In Graduate Studies in Mathematics, 381–454. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/050/10.
Full textAbramovich, Y., and C. Aliprantis. "Invariant subspaces." In Problems in Operator Theory, 299–334. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/051/10.
Full textDuren, Peter, and Alexander Schuster. "Invariant subspaces." In Bergman Spaces, 245–69. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/surv/100/09.
Full textMandrekar, Vidyadhar S., and David A. Redett. "Invariant Subspaces." In Weakly Stationary Random Fields, Invariant Subspaces and Applications, 109–33. Boca Raton: CRC Press, 2018.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9780203709733-3.
Full textTrentelman, Harry L., Anton A. Stoorvogel, and Malo Hautus. "Controlled invariant subspaces." In Communications and Control Engineering, 75–106. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0339-4_4.
Full textConference papers on the topic "Invariant subspaces"
Lemmon, Michael. "Inductive Inference of Invariant Subspaces." In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793062.
Full textHaseli, Masih, and Jorge Cortes. "Fast Identification of Koopman-Invariant Subspaces: Parallel Symmetric Subspace Decomposition." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147223.
Full textBajcinca, Naim. "On pole placement and invariant subspaces." In 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, 2013. http://dx.doi.org/10.1109/icat.2013.6684081.
Full textFACCHI, P., V. L. LEPORE, and S. PASCAZIO. "INVARIANT SUBSPACES AND CONTROL OF DECOHERENCE." In Quantum Information and Computing. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774491_0008.
Full textAguilera, Alejandra, Carlos Cabrelli, Diana Carbajal, and Victoria Paternostro. "Frames by Iterations and Invariant Subspaces." In 2023 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2023. http://dx.doi.org/10.1109/sampta59647.2023.10301371.
Full textLi, Na, and Man-Wai Mak. "SNR-invariant PLDA with multiple speaker subspaces." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472742.
Full textHogan, Jeffrey A., and Joseph D. Lakey. "Sampling for shift-invariant and wavelet subspaces." In International Symposium on Optical Science and Technology, edited by Akram Aldroubi, Andrew F. Laine, and Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408622.
Full textLawrence, Douglas A. "Controlled invariant subspaces for linear impulsive systems." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6858804.
Full textLawrence, Douglas A. "Conditioned invariant subspaces for linear impulsive systems." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7172093.
Full textOtsuka, N. "Generalized invariant subspaces for linear multivariable systems." In UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980461.
Full textReports on the topic "Invariant subspaces"
Dongarra, J. J., S. Hammarling, and J. H. Wilkinson. Numerical considerations in computing invariant subspaces. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6427540.
Full textBerner, Chad. Shift-invariant subspaces of locally compact abelian groups. Ames (Iowa): Iowa State University, January 2021. http://dx.doi.org/10.31274/cc-20240624-1284.
Full textRon, Amos, and Zuowei Shen. Frames and Stable Bases for Shift-Invariant Subspaces of L2(IRd). Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada276470.
Full textDE Boor, Carl, Ronald A. DeVore, and Amos Ron. Approximation from Shift-Invariant Subspaces of L sup 2 (R sup d). Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada238165.
Full text