Academic literature on the topic 'Invariant subspaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Invariant subspaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Invariant subspaces"

1

IZUCHI, KEI JI, KOU HEI IZUCHI, and YUKO IZUCHI. "SPLITTING INVARIANT SUBSPACES IN THE HARDY SPACE OVER THE BIDISK." Journal of the Australian Mathematical Society 102, no. 2 (May 12, 2016): 205–23. http://dx.doi.org/10.1017/s1446788716000203.

Full text
Abstract:
Let $H^{2}$ be the Hardy space over the bidisk. It is known that Hilbert–Schmidt invariant subspaces of $H^{2}$ have nice properties. An invariant subspace which is unitarily equivalent to some invariant subspace whose continuous spectrum does not coincide with $\overline{\mathbb{D}}$ is Hilbert–Schmidt. We shall introduce the concept of splittingness for invariant subspaces and prove that they are Hilbert–Schmidt.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Guo-Hua, Jia-Fu Pang, Yong-Yang Jin, and Bo Ren. "Invariant Subspaces of Short Pulse-Type Equations and Reductions." Symmetry 16, no. 6 (June 18, 2024): 760. http://dx.doi.org/10.3390/sym16060760.

Full text
Abstract:
In this paper, we extend the invariant subspace method to a class of short pulse-type equations. Complete classification results with invariant subspaces from 2 to 5 dimensions are provided. The key step is to take subspaces of solutions of linear ordinary differential equations as invariant subspaces that nonlinear operators admit. Some concrete examples and corresponding reduced systems are presented to illustrate this method.
APA, Harvard, Vancouver, ISO, and other styles
3

ASSADI, AMANOLLAH, MOHAMAD ALI FARZANEH, and HAJI MOHAMMAD MOHAMMADINEJAD. "ON THE DECOMPOSITION OF OPERATORS WITH SEVERAL ALMOST-INVARIANT SUBSPACES." Bulletin of the Australian Mathematical Society 99, no. 2 (January 4, 2019): 274–83. http://dx.doi.org/10.1017/s0004972718001363.

Full text
Abstract:
We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.
APA, Harvard, Vancouver, ISO, and other styles
4

Bose, Snehasish, P. Muthukumar, and Jaydeb Sarkar. "Beurling type invariant subspaces of composition operators." Journal of Operator Theory 86, no. 2 (November 15, 2021): 425–38. http://dx.doi.org/10.7900/jot.2020may15.2286.

Full text
Abstract:
The aim of this paper is to answer the following question concerning invariant subspaces of composition operators: characterize φ, holomorphic self maps of D, and inner functions θ∈H∞(D) such that the Beurling type invariant subspace θH2 is an invariant subspace for Cφ. We prove the following result: Cφ(θH2)⊆θH2 if and only if θ∘φθ∈S(D). This classification also allows us to recover or improve some known results on Beurling type invariant subspaces of composition operators.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Junfeng. "On Invariant Subspaces for the Shift Operator." Symmetry 11, no. 6 (June 1, 2019): 743. http://dx.doi.org/10.3390/sym11060743.

Full text
Abstract:
In this paper, we improve two known invariant subspace theorems. More specifically, we show that a closed linear subspace M in the Hardy space H p ( D ) ( 1 ≤ p < ∞ ) is invariant under the shift operator M z on H p ( D ) if and only if it is hyperinvariant under M z , and that a closed linear subspace M in the Lebesgue space L 2 ( ∂ D ) is reducing under the shift operator M e i θ on L 2 ( ∂ D ) if and only if it is hyperinvariant under M e i θ . At the same time, we show that there are two large classes of invariant subspaces for M e i θ that are not hyperinvariant subspaces for M e i θ and are also not reducing subspaces for M e i θ . Moreover, we still show that there is a large class of hyperinvariant subspaces for M z that are not reducing subspaces for M z . Furthermore, we gave two new versions of the formula of the reproducing function in the Hardy space H 2 ( D ) , which are the analogue of the formula of the reproducing function in the Bergman space A 2 ( D ) . In addition, the conclusions in this paper are interesting now, or later if they are written into the literature of invariant subspaces and function spaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Krivosheev, A. S., and O. A. Krivosheeva. "Invariant Subspaces in Unbounded Domains." Issues of Analysis 28, no. 3 (November 2021): 91–107. http://dx.doi.org/10.15393/j3.art.2021.10870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szekelyhidi, Laszlo, and Seyyed Mohammad Tabatabaie. "Invariant Subspaces on KPC-Hypergroups." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 1 (March 25, 2019): 122–30. http://dx.doi.org/10.15407/mag15.01.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forouzanfar, AM, S. Khorshidvandpour, and Z. Bahmani. "Uniformly invariant normed spaces." BIBECHANA 10 (October 31, 2013): 31–33. http://dx.doi.org/10.3126/bibechana.v10i0.7555.

Full text
Abstract:
In this work, we introduce the concepts of compactly invariant and uniformly invariant. Also we define sometimes C-invariant closed subspaces and then prove every m-dimensional normed space with m > 1 has a nontrivial sometimes C-invariant closed subspace. Sequentially C-invariant closed subspaces are also introduced. Next, An open problem on the connection between compactly invariant and uniformly invariant normed spaces has been posed. Finally, we prove a theorem on the existence of a positive operator on a strict uniformly invariant Hilbert space. DOI: http://dx.doi.org/10.3126/bibechana.v10i0.7555 BIBECHANA 10 (2014) 31-33
APA, Harvard, Vancouver, ISO, and other styles
9

Fernández-Morales, H. R., A. G. García, M. A. Hernández-Medina, and M. J. Muñoz-Bouzo. "Generalized sampling: From shift-invariant to U-invariant spaces." Analysis and Applications 13, no. 03 (March 5, 2015): 303–29. http://dx.doi.org/10.1142/s0219530514500213.

Full text
Abstract:
The aim of this article is to derive a sampling theory in U-invariant subspaces of a separable Hilbert space ℋ where U denotes a unitary operator defined on ℋ. To this end, we use some special dual frames for L2(0, 1), and the fact that any U-invariant subspace with stable generator is the image of L2(0, 1) by means of a bounded invertible operator. The used mathematical technique mimics some previous sampling work for shift-invariant subspaces of L2(ℝ). Thus, sampling frame expansions in U-invariant spaces are obtained. In order to generalize convolution systems and deal with the time-jitter error in this new setting we consider a continuous group of unitary operators which includes the operator U.
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Kunyu, and Dechao Zheng. "Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators." Journal of Functional Analysis 187, no. 2 (December 2001): 308–42. http://dx.doi.org/10.1006/jfan.2001.3820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Invariant subspaces"

1

Adams, Lynn I. "Classifying Triply-Invariant Subspaces." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1185565121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mahvidi, Ali. "Invariant subspaces of composition operators." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0020/NQ45739.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

POSTERNAK, REGINA. "INVARIANT SUBSPACES FOR HIPONORMAL OPERATORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3338@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
O problema do subespaço invariante consiste na seguinte pergunta: será que todo operador (i.e., transformação linear limitada) atuando em um espaço de Hilbert separável (complexo de dimensão infinita) tem subespaço invariante nãotrivial? Este é, possivelmente, o mais importante problema em aberto na teoria de operadores. Em particular, o problema do subespaço invariante permanece em aberto (pelo menos até a presente data) para operadores hiponormais, ou seja, ainda não se sabe se todo operador hiponormal (atuando em um espaço de Hilbert complexo separável) tem subespaço invariante não-trivial. O objetivo desta dissertação é apresentar, de maneira unificada, um levantamento sobre subespaços invariantes para operadores hiponormais. Inicialmente, o problema do subespaço invariante é abordado em sua forma geral (sem restrição a classes de operadores) onde diversos resultados clássicos são expostos. Em seguida, o problema específico de se encontrar subespaços invariantes para operadores hiponormais é apresentado de maneira sistemática. Em particular, investigamos propriedades do espectro de um operador hiponormal que não tenha subespaço invariante não trivial.
The invariant subspace problem is: does every operator acting on an infinite-dimensional complex separable Hilbert space have a nontrivial invariant subspace? This is, probably, the most important open question in the operator theory. In particular, the problem of the invariant subspace remains open (at least until now) for hyponormal operators, that is, it is still unknown whether every hyponormal operator (on a complex separable Hilbert space) has a nontrivial invariant subspace. The purpose of these dissertation is to present, in an unified way, a survey on invariant subspaces for hyponormal operators. At first, the invariant subspace problem is posed in a general form (without any restriction on the operator classes), where some of classical results are discussed. Secondly, the specific problem of finding invariant subspaces for hyponormal operators is presented in a systematic way and, in particular, we show some characteristics of the spectrum of a hyponormal operator with no nontrivial invariant subspace.
APA, Harvard, Vancouver, ISO, and other styles
4

Mehrmann, Volker, and Hongguo Xu. "Lagrangian invariant subspaces of Hamiltonian matrices." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501133.

Full text
Abstract:
The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and sufficient conditions are given in terms of the Jordan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases existence and uniqueness results for Hermitian solutions of continuous time algebraic Riccati equations.
APA, Harvard, Vancouver, ISO, and other styles
5

Wojtasinski, Justyna Agata. "Classifying Triply-Invariant Subspaces for p=3." Akron, OH : University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1209134757.

Full text
Abstract:
Thesis (M.S.)--University of Akron, Dept. of Mathematics, 2008.
"May, 2008." Title from electronic thesis title page (viewed 07/12/2008) Advisor, Jeffrey M. Riedl; Faculty Readers, Ethel Wheland, Stuart Clay; Department Chair, Joseph Wilder; Dean of the College, Ronald F. Levant; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Rachael Caroline. "Spectral densities and invariant subspaces of operators." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schulze, Bert-Wolfgang, Anton Savin, and Boris Sternin. "Elliptic operators in subspaces and the eta invariant." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2549/.

Full text
Abstract:
The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces.
APA, Harvard, Vancouver, ISO, and other styles
8

Lücking, Simon [Verfasser]. "The Daugavet Property and Translation-Invariant Subspaces / Simon Lücking." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1054163154/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jiang, Jiaosheng. "Bounded operators without invariant subspaces on certain Banach spaces." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hayakawa, Yoshikazu, and D. ŠILJAK Dragoslav. "On almost invariant subspaces of structural systems and decentralized control." IEEE, 1988. http://hdl.handle.net/2237/6854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Invariant subspaces"

1

Radjavi, Heydar. Invariant subspaces. 2nd ed. Mineola, N.Y: Dover Publications, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henry, Helson, Yadav B. S. 1931-, Singh Udita Narayana 1917-1989, University of Delhi. Dept. of Mathematics., and International Conference on "Invariant Subspaces and Allied Topics" (1986 : Dept. of Mathematics, University of Delhi), eds. Invariant subspaces and allied topics. New Delhi: Narosa Pub. House, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mashreghi, Javad, Emmanuel Fricain, and William Ross, eds. Invariant Subspaces of the Shift Operator. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/conm/638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1929-, Lancaster Peter, and Rodman L, eds. Invariant subspaces of matrices with applications. New York: Wiley, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

MacDonald, Gordon Wilson. Invariant subspaces for weighted translation operators. Toronto: [s.n.], 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chalendar, Isabelle. Modern approaches to the invariant-subspace problem. Cambridge, UK: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Demmel, James Weldon. Three methods for refining estimates of invariant subspaces. New York: Courant Institute of Mathematical Sciences, New York University, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Douglas, R. G., C. M. Pearcy, B. Sz.-Nagy, F. H. Vasilescu, Dan Voiculescu, and Gr Arsene, eds. Advances in Invariant Subspaces and Other Results of Operator Theory. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-7698-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ciprian, Foiaş, Pearcy Carl M. 1935-, and Conference Board of the Mathematical Sciences., eds. Dual algebras with applications to invariant subspaces and dilation theory. Providence, R.I: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mashreghi, Javad, Emmanuel Fricain, and William T. Ross. Invariant subspaces of the shift operator: CRM Workshop, Invariant Subspaces of the Shift Operator, August 26-30, 2013, Centre de Recherches Mathematiques, Universite' de Montreal, Montreal. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Invariant subspaces"

1

Hedenmalm, Haakan, Boris Korenblum, and Kehe Zhu. "Invariant Subspaces." In Graduate Texts in Mathematics, 176–89. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0497-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nikol’skiĭ, Nikolaĭ K. "Invariant Subspaces." In Grundlehren der mathematischen Wissenschaften, 10–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70151-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubrusly, Carlos S. "Invariant Subspaces." In Hilbert Space Operators, 1–11. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-2064-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Farenick, Douglas R. "Invariant Subspaces." In Universitext, 77–116. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0097-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Katznelson, Yitzhak, and Yonatan Katznelson. "Invariant subspaces." In The Student Mathematical Library, 85–101. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/stml/044/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abramovich, Y., and C. Aliprantis. "Invariant subspaces." In Graduate Studies in Mathematics, 381–454. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/050/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abramovich, Y., and C. Aliprantis. "Invariant subspaces." In Problems in Operator Theory, 299–334. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/051/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duren, Peter, and Alexander Schuster. "Invariant subspaces." In Bergman Spaces, 245–69. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/surv/100/09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mandrekar, Vidyadhar S., and David A. Redett. "Invariant Subspaces." In Weakly Stationary Random Fields, Invariant Subspaces and Applications, 109–33. Boca Raton: CRC Press, 2018.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9780203709733-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trentelman, Harry L., Anton A. Stoorvogel, and Malo Hautus. "Controlled invariant subspaces." In Communications and Control Engineering, 75–106. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0339-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Invariant subspaces"

1

Lemmon, Michael. "Inductive Inference of Invariant Subspaces." In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4793062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haseli, Masih, and Jorge Cortes. "Fast Identification of Koopman-Invariant Subspaces: Parallel Symmetric Subspace Decomposition." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bajcinca, Naim. "On pole placement and invariant subspaces." In 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, 2013. http://dx.doi.org/10.1109/icat.2013.6684081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

FACCHI, P., V. L. LEPORE, and S. PASCAZIO. "INVARIANT SUBSPACES AND CONTROL OF DECOHERENCE." In Quantum Information and Computing. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774491_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aguilera, Alejandra, Carlos Cabrelli, Diana Carbajal, and Victoria Paternostro. "Frames by Iterations and Invariant Subspaces." In 2023 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2023. http://dx.doi.org/10.1109/sampta59647.2023.10301371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Na, and Man-Wai Mak. "SNR-invariant PLDA with multiple speaker subspaces." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hogan, Jeffrey A., and Joseph D. Lakey. "Sampling for shift-invariant and wavelet subspaces." In International Symposium on Optical Science and Technology, edited by Akram Aldroubi, Andrew F. Laine, and Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lawrence, Douglas A. "Controlled invariant subspaces for linear impulsive systems." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6858804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lawrence, Douglas A. "Conditioned invariant subspaces for linear impulsive systems." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7172093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Otsuka, N. "Generalized invariant subspaces for linear multivariable systems." In UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980461.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Invariant subspaces"

1

Dongarra, J. J., S. Hammarling, and J. H. Wilkinson. Numerical considerations in computing invariant subspaces. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6427540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berner, Chad. Shift-invariant subspaces of locally compact abelian groups. Ames (Iowa): Iowa State University, January 2021. http://dx.doi.org/10.31274/cc-20240624-1284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ron, Amos, and Zuowei Shen. Frames and Stable Bases for Shift-Invariant Subspaces of L2(IRd). Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada276470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DE Boor, Carl, Ronald A. DeVore, and Amos Ron. Approximation from Shift-Invariant Subspaces of L sup 2 (R sup d). Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada238165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography