Dissertations / Theses on the topic 'Invariant subspaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Invariant subspaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Adams, Lynn I. "Classifying Triply-Invariant Subspaces." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1185565121.
Full textMahvidi, Ali. "Invariant subspaces of composition operators." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0020/NQ45739.pdf.
Full textPOSTERNAK, REGINA. "INVARIANT SUBSPACES FOR HIPONORMAL OPERATORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3338@1.
Full textO problema do subespaço invariante consiste na seguinte pergunta: será que todo operador (i.e., transformação linear limitada) atuando em um espaço de Hilbert separável (complexo de dimensão infinita) tem subespaço invariante nãotrivial? Este é, possivelmente, o mais importante problema em aberto na teoria de operadores. Em particular, o problema do subespaço invariante permanece em aberto (pelo menos até a presente data) para operadores hiponormais, ou seja, ainda não se sabe se todo operador hiponormal (atuando em um espaço de Hilbert complexo separável) tem subespaço invariante não-trivial. O objetivo desta dissertação é apresentar, de maneira unificada, um levantamento sobre subespaços invariantes para operadores hiponormais. Inicialmente, o problema do subespaço invariante é abordado em sua forma geral (sem restrição a classes de operadores) onde diversos resultados clássicos são expostos. Em seguida, o problema específico de se encontrar subespaços invariantes para operadores hiponormais é apresentado de maneira sistemática. Em particular, investigamos propriedades do espectro de um operador hiponormal que não tenha subespaço invariante não trivial.
The invariant subspace problem is: does every operator acting on an infinite-dimensional complex separable Hilbert space have a nontrivial invariant subspace? This is, probably, the most important open question in the operator theory. In particular, the problem of the invariant subspace remains open (at least until now) for hyponormal operators, that is, it is still unknown whether every hyponormal operator (on a complex separable Hilbert space) has a nontrivial invariant subspace. The purpose of these dissertation is to present, in an unified way, a survey on invariant subspaces for hyponormal operators. At first, the invariant subspace problem is posed in a general form (without any restriction on the operator classes), where some of classical results are discussed. Secondly, the specific problem of finding invariant subspaces for hyponormal operators is presented in a systematic way and, in particular, we show some characteristics of the spectrum of a hyponormal operator with no nontrivial invariant subspace.
Mehrmann, Volker, and Hongguo Xu. "Lagrangian invariant subspaces of Hamiltonian matrices." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200501133.
Full textWojtasinski, Justyna Agata. "Classifying Triply-Invariant Subspaces for p=3." Akron, OH : University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1209134757.
Full text"May, 2008." Title from electronic thesis title page (viewed 07/12/2008) Advisor, Jeffrey M. Riedl; Faculty Readers, Ethel Wheland, Stuart Clay; Department Chair, Joseph Wilder; Dean of the College, Ronald F. Levant; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Smith, Rachael Caroline. "Spectral densities and invariant subspaces of operators." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432300.
Full textSchulze, Bert-Wolfgang, Anton Savin, and Boris Sternin. "Elliptic operators in subspaces and the eta invariant." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2549/.
Full textLücking, Simon [Verfasser]. "The Daugavet Property and Translation-Invariant Subspaces / Simon Lücking." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1054163154/34.
Full textJiang, Jiaosheng. "Bounded operators without invariant subspaces on certain Banach spaces." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037506.
Full textHayakawa, Yoshikazu, and D. ŠILJAK Dragoslav. "On almost invariant subspaces of structural systems and decentralized control." IEEE, 1988. http://hdl.handle.net/2237/6854.
Full textByers, R., C. He, and V. Mehrmann. "The Matrix Sign Function Method and the Computation of Invariant Subspaces." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619.
Full textYavuz, Onur. "Invariant subspaces for Banach space operators with a multiply connected spectrum." [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3219888.
Full text"Title from dissertation home page (viewed June 27, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3174. Adviser: Hari Bercovici.
Sutton, Daniel Joseph. "Structure of Invariant Subspaces for Left-Invertible Operators on Hilbert Space." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/28807.
Full textPh. D.
Langendörfer, Sebastian [Verfasser], and Jörg [Akademischer Betreuer] Eschmeier. "On unitarily invariant subspaces and Cowen-Douglas theory : characterization of Toeplitz operators, Wold decomposition type theorems and fiber dimension for invariant subspaces / Sebastian Langendörfer ; Betreuer: Jörg Eschmeier." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://d-nb.info/1196090149/34.
Full textLangendörfer, Sebastian Verfasser], and Jörg [Akademischer Betreuer] [Eschmeier. "On unitarily invariant subspaces and Cowen-Douglas theory : characterization of Toeplitz operators, Wold decomposition type theorems and fiber dimension for invariant subspaces / Sebastian Langendörfer ; Betreuer: Jörg Eschmeier." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2019. http://nbn-resolving.de/urn:nbn:de:bsz:291--ds-287558.
Full textSavin, Anton, and Boris Sternin. "Elliptic operators in even subspaces." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2546/.
Full textSavin, Anton, and Boris Sternin. "Elliptic operators in odd subspaces." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2547/.
Full textHeck, Larry Paul. "A subspace approach to the auomatic design of pattern recognition systems for mechanical system monitoring." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/15016.
Full textFelix, Christina M. "Classification of Doubly-Invariant Subgroups for p=2." Akron, OH : University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1207936688.
Full text"May, 2008." Title from electronic thesis title page (viewed 07/12/2008) Advisor, Jeffrey M. Riedl; Faculty Readers, William S. Clary, Ethel R. Wheland; Department Chair, Joseph W. Wilder; Dean of the College, Ronald F. Levant; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Caglar, Mert. "Invariant Subspaces Of Positive Operators On Riesz Spaces And Observations On Cd0(k)-spaces." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606391/index.pdf.
Full textMkhaliphi, Mkhuseli Bruce. "Reconstruction of Functions From Non-uniformly Distributed Sampled Data in Shift-Invariant Frame Subspaces." Master's thesis, Faculty of Engineering and the Built Environment, 2018. http://hdl.handle.net/11427/30079.
Full textDietl, Guido K. E. "Linear estimation and detection in Krylov subspaces : with ... 11 tables /." Berlin [u.a.] : Springer, 2007. http://www.gbv.de/dms/ilmenau/toc/522153062.PDF.
Full textSavin, Anton, and Boris Sternin. "Pseudodifferential subspaces and their applications in elliptic theory." Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2993/.
Full textToolan, Timothy M. "Advances in sliding window subspace tracking /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3206257.
Full textHokamp, Samuel A. "Weak*-Closed Unitarily and Moebius Invariant Spaces of Bounded Measurable Functions on a Sphere." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1562943150719334.
Full textGeorgescu, Magdalena. "On the Similarity of Operator Algebras to C*-Algebras." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2932.
Full textWe define amenability and total reductivity, as well as present some of the implications of these properties. For the purpose of establishing the desired result in specific cases, we describe the properties of two well-known types of operators, namely the compact operators and quasitriangular operators. Finally, we show that if A is an algebra of compact operators or of triangular operators then A is similar to a C* algebra if and only if it has the total reduction property.
Overmoyer, Kate. "Applications of Entire Function Theory to the Spectral Synthesis of Diagonal Operators." Bowling Green State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1305826657.
Full textMaree, Johannes Philippus. "Fault detection for the Benfield process using a closed-loop subspace re-identification approach." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-11262009-224053/.
Full textAbstracts in English and Afrikaans. Includes bibliographical references (leaves 180-187).
Barbian, Christoph [Verfasser], and Jörg [Akademischer Betreuer] Eschmeier. "Beurling-type representation of invariant subspaces in reproducing kernel Hilbert spaces / Christoph Barbian. Betreuer: Jörg Eschmeier." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2011. http://d-nb.info/1051285119/34.
Full textDeters, Ian Nathaniel. "On The Cyclicity And Synthesis Of Diagonal Operators On The Space Of Functions Analytic On A Disk." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1236617862.
Full textLiang, Xiaoming. "A class of weighted Bergman spaces, reducing subspaces for multiple weighted shifts, and dilatable operators." Diss., Virginia Tech, 1996. http://hdl.handle.net/10919/39164.
Full textPh. D.
Medina, Enrique A. "Linear Impulsive Control Systems: A Geometric Approach." Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1187704023.
Full textLeon, Ralph Daniel. "Module structure of a Hilbert space." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2469.
Full textPORTELLA, JOAO ANTONIO ZANNI. "REMARKS ABOUT THE INVARIAN SUBSPACE PROBLEM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17402@1.
Full textO Problema do Subespaço Invariante é a questão em aberto mais importante em Teoria de Operadores. Apesar de existirem diversos resultados parciais, a questão continua em aberto para classes de operadores definidas em espaços de Hilbert complexos separáveis de dimensão infinita. No caso de uma resposta positiva, este pode ser o início de uma teoria geral para a estrutura de operadores em espaços de Hilbert. Se apresentado um contra-exemplo, então o mesmo pode dar origem a diversos teoremas de aproximação. Este trabalho tem como objetivo realizar um levantamento dos principais resultados relativos a essa questão, e apresentar um exemplo de como poderia ser o espectro de um operador hiponormal (em um espaço de Hilbert complexo separável de dimensão infinita) que não tivesse subespaço invariante não trivial (caso tal operador exista).
The Invariant Subspace Problem is the most important open question in Operator Theory. Although, there are many partial results, the question remains open for operators on complex, infinite-dimensional, separable Hilbert spaces. To prove that every operator has a non-trivial invariant subspace might be the beginning of a general structure theory for Hilbert space operators. On the other hand, a counterexample would may yield a number of approximation theorems. In this work we present a survey the Invariant Subspace Problem, and in addition we show also how it might be the spectrum of a hyponormal operator (on a complex separable infinitedimensional Hilbert space) which had no nontrivial invariant subspace.
Pence, Zachary. "Metric Spectral Theory and the Invariant Subspace Problem." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-453223.
Full textVitório, Henrique de Barros Correia. "A geometria de curvas fanning e de suas reduções simpléticas." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306819.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-16T11:28:16Z (GMT). No. of bitstreams: 1 Vitorio_HenriquedeBarrosCorreia_D.pdf: 1074812 bytes, checksum: e23ca71f5e87d6990c05425cdcb87bee (MD5) Previous issue date: 2010
Resumo: A presente tese dá continuidade ao recente trabalho de J.C . Álvarez e C.E. Durán acerca dos invariantes geométricos de uma classe genérica de curvas em variedades de Grassmann, ditas "curvas fanning". Mais precisamente, considera-se como tais curvas de planos lagrangeanos comportam-se mediante uma redução simplética, e conclui-se a existência de dois novos invariantes que desempenham um papel fundamental neste contexto, mais notavelmente a maneira pela qual eles generalizam as bem conhecidas fórmulas de O'Neill para submersões isométricas
Abstract: The present thesis gives continuity to the recent work of J.C. Álvarez e C.E. Durán about the geometric invariants of a generic class of curves in the Grassmann manifolds, called "fanning curves". More precisely, we look at how such curves of lagrangean planes behave under a symplectic reduction, and establish the existence of two new invariants which play a fundamental role in that context, more notably the way they generalize the well known O'Neill's formulas for isometric submersions
Doutorado
Matematica
Doutor em Matemática
Chen, Yahao. "Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR04.
Full textIn the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure
Guan, Yu. "Covariate-invariant gait recognition using random subspace method and its extensions." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/67147/.
Full textJhinaoui, Ahmed. "Subspace-based identification and vibration monitoring algorithms for rotating systems." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S161.
Full textSubspace identification methods are widely used for caracterizing modal param-eters and for vibration monitoring of mechanical structures. They were shown powerful for the so-called linear time-invariant systems. However, they are not adapted to rotating sys-tems such as helicopters and wind turbines, which are inherently time-periodic systems. The goal of this thesis is to extend the applicability of these methods to this particular class of systems. First, a new identification algorithm is suggested. This algorithm permits to iden-tify the so-called Floquet modal structure. Then, a sensitivity study is conducted in order to quantify uncertainties, related to noises and other sources, about the identified modal param-eters. Finally and based on the suggested identification algorithm, a method for instability detection is developed. The main feature of this method is to define some residual, which is function of modal parameters, then to detect an eventual change over it which means a possible deviation toward an unstable regime. The suggested methods were applied to both numerical and experimental data
Benner, P., V. Mehrmann, and H. Xu. "A new method for computing the stable invariant subspace of a real Hamiltonian matrix or Breaking Van Loans curse?" Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801309.
Full textMaree, J. P. (Johannes Philippus). "Fault detection for the Benfield process using a closed-loop subspace re-identification approach." Diss., University of Pretoria, 2008. http://hdl.handle.net/2263/29844.
Full textDissertation (MEng)--University of Pretoria, 2008.
Electrical, Electronic and Computer Engineering
unrestricted
Rubensson, Emanuel H. "Matrix Algebra for Quantum Chemistry." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.
Full textHovelaque, Vincent. "Analyse structurelle, géométrique et graphique des systèmes linéaires structurés." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0137.
Full textDeeley, Robin. "Orbit operator and invariant subspaces." Thesis, 2006. http://hdl.handle.net/1828/2089.
Full textPopov, Alexey. "Invariant subspaces of certain classes of operators." Phd thesis, 2011. http://hdl.handle.net/10048/1906.
Full textMathematics
Yu, Ping Chang, and 游品章. "Computation of Stable Invariant Subspaces of Symplectic Pencils." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/47657042543363483658.
Full textKleper, Dvir. "Invariant subspaces of composition operators on weighted Hardy-Hilbert spaces /." 2008. http://proquest.umi.com/pqdlink?did=1659892511&sid=4&Fmt=2&clientId=12520&RQT=309&VName=PQD.
Full textBošek, Jaroslav [Verfasser]. "Continuation of invariant subspaces in bifurcation problems / vorgelegt von Jaroslav Bošek." 2003. http://d-nb.info/972781196/34.
Full textTrumpf, Jochen. "On the geometry and parametrization of almost invariant subspaces and observer theory." Doctoral thesis, 2002. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-5034.
Full textIn meiner Doktorarbeit "On the geometry and parametrization of almost invariant subspaces and observer theory" betrachte ich die Menge der fast (C,A)-invarianten Unterräume fester Dimension zu einem vorgegebenen linearen endlichdimensionalen zeitinvarianten beobachtbaren Kontrollsystem in Zustandsraumdarstellung. Der Begriff der fast (C,A)-invarianten Unterräume geht auf Willems zurück. Er verallgemeinert das Konzept eines (C,A)-invarianten Unterraums dahingehend, daß die Invarianzeigenschaft nur bis auf eine beliebig kleine Abweichung in der Metrik des Zustandsraumes erfüllt sein muß. Eines der Ziele der Theorie der fast (C,A)-invarianten Unterräume war es, diejenigen Unterräume zu charakterisieren, die als Grenzwerte von Folgen (C,A)-invarianter Unterräume auftreten. Özveren, Verghese und Willsky haben jedoch ein Beispiel angegeben, das zeigt, daß die Menge der fast (C,A)-invarianten Unterräume hierfür nicht groß genug ist. Auf diese Problematik gehe ich in einer gemeinsamen Arbeit mit U. Helmke und P.A. Fuhrmann (Towards a compactification of the set of conditioned invariant subspaces, Systems and Control Letters, 48(2):101-111, 2003) ein, die nicht Teil meiner Dissertation ist. Antoulas hat eine Beschreibung von (C,A)-invarianten Unterräumen als Kerne von permutierten und abgeschnittenen Erreichbarkeitsmatrizen geeigneter Größe angegeben. Diese Beschreibung benutzen Fuhrmann und Helmke um einen Diffeomorphismus von der Menge der Ähnlichkeitsklassen bestimmter kontrollierbarer Matrizenpaare auf die Menge der "tight" (C,A)-invarianten Unterräume zu konstruieren. In meiner Dissertation verallgemeinere ich dieses Resultat auf fast (C,A)-invariante Unterräume, indem ich sie mit Hilfe von "restricted system equivalence"-Klassen kontrollierbarer Matrizentripel darstelle. Darüberhinaus identifiziere ich die kontrollierbaren Matrizenpaare, die in der Kerndarstellung (C,A)-invarianter Unterräume auftreten, als Korestriktionen des ursprünglichen Systems auf den jeweiligen Unterraum. Es besteht eine enge Verbindung zwischen (C,A)-invarianten Unterräumen und partiellen Beobachtern. In der Tat existiert ein "tracking" Beobachter für eine lineare Funktion des Zustandes des beobachteten Systems genau dann, wenn der Kern dieser Funktion (C,A)-invariant ist. In meiner Dissertation zeige ich, daß die Systemmatrizen der Beobachter mit den Korestriktionen des beobachteten Systems auf die Kerne der beobachteten Funktionen übereinstimmen. Diese wiederum stehen in enger Beziehung zu partiellen Realisierungen. Weiter beweise ich, daß die Menge der "tracking" Beobachter-Parameter fester Größe, das heißt der "tracking" Beobachter fester Ordnung zusammen mit den beobachteten Funktionen, eine glatte Mannigfaltigkeitsstruktur trägt. Ich konstruiere eine Vektorbündelstruktur auf der Menge der (C,A)-invarianten Unterräume fester Dimension zusammen mit ihren "Freunden", das heißt den "output injections", welche den jeweiligen Unterraum invariant machen, wobei die Beobachtermannigfaltigkeit als Basisraum dient. Willems und Trentelman haben das Konzept eines "tracking" Beobachter verallgemeinert, indem sie auch Ableitungen des Ausgangs des beobachteten Systems in die Beobachtergleichungen aufnahmen (PID-Beobachter). Sie haben gezeigt, daß ein PID-Beobachter für eine lineare Funktion des Zustands des beobachteten Systems genau dann existiert, wenn der Kern dieser Funktion fast (C,A)-invariant ist. In meiner Dissertation ersetze ich die PID-Beobachter durch singuläre Systeme, was den Vorteil hat, daß die Systemmatrizen des Beobachters mit den Matrizen übereinstimmen, die in der Kerndarstellung des Unterraums auftauchen. (C,A)-invariante Unterräume lassen sich auch als Bildräume von Block-Toeplitz-Matrizen beschreiben. Hinrichsen, Münzner und Prätzel-Wolters, Fuhrmann und Helmke, und Ferrer, F. Puerta, X. Puerta und Zaballa benutzen diesen Zugang, um eine Stratifizierung der Menge der (C,A)-invarianten Unterräume fester Dimension in glatte Mannigfaltigkeiten zu konstruieren. Diese sogenannten Brunovsky-Strata bestehen aus all den Unterräumen, für die die Einschränkung des Systems auf den Unterraum jeweils vorgegebene Beobachtbarkeitsindizes hat. Obige Autoren konstruieren auch eine Zellzerlegung der Brunovsky-Strata in sogenannte Kronecker-Zellen. In meiner Dissertation zeige ich, daß im "tight" Fall diese Zellzerlegung von einer Bruhat-Zerlegung einer verallgemeinerten Fahnenmannigfaltigkeit induziert wird. Ich identifiziere die Adhärenzordnung der Zellzerlegung als inverse Bruhat-Ordnung
Thompson, Derek Allen. "Restrictions to Invariant Subspaces of Composition Operators on the Hardy Space of the Disk." 2014. http://hdl.handle.net/1805/3881.
Full textInvariant subspaces are a natural topic in linear algebra and operator theory. In some rare cases, the restrictions of operators to different invariant subspaces are unitarily equivalent, such as certain restrictions of the unilateral shift on the Hardy space of the disk. A composition operator with symbol fixing 0 has a nested sequence of invariant subspaces, and if the symbol is linear fractional and extremally noncompact, the restrictions to these subspaces all have the same norm and spectrum. Despite this evidence, we will use semigroup techniques to show many cases where the restrictions are still not unitarily equivalent.