Academic literature on the topic 'Invariants de Welschinger'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Invariants de Welschinger.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Invariants de Welschinger"

1

Brugallé, E. "On the invariance of Welschinger invariants." St. Petersburg Mathematical Journal 32, no. 2 (March 2, 2021): 199–214. http://dx.doi.org/10.1090/spmj/1644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Itenberg, Ilia, Viatcheslav Kharlamov, and Eugenii Shustin. "Welschinger invariants of real del Pezzo surfaces of degree ≥ 2." International Journal of Mathematics 26, no. 08 (July 2015): 1550060. http://dx.doi.org/10.1142/s0129167x15500603.

Full text
Abstract:
We compute the purely real Welschinger invariants, both original and modified, for all real del Pezzo surfaces of degree ≥ 2. We show that under some conditions, for such a surface X and a real nef and big divisor class D ∈ Pic (X), through any generic collection of - DKX - 1 real points lying on a connected component of the real part ℝX of X one can trace a real rational curve C ∈ |D|. This is derived from the positivity of appropriate Welschinger invariants. We furthermore show that these invariants are asymptotically equivalent, in the logarithmic scale, to the corresponding genus zero Gromov–Witten invariants. Our approach consists in a conversion of Shoval–Shustin recursive formulas counting complex curves on the plane blown up at seven points and of Vakil's extension of the Abramovich–Bertram formula for Gromov–Witten invariants into formulas computing real enumerative invariants.
APA, Harvard, Vancouver, ISO, and other styles
3

Brugallé, Erwan, and Nicolas Puignau. "On Welschinger invariants of symplectic 4-manifolds." Commentarii Mathematici Helvetici 90, no. 4 (2015): 905–38. http://dx.doi.org/10.4171/cmh/373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brugallé, Erwan, and Nicolas Puignau. "Behavior of Welschinger Invariants Under Morse Simplifications." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 147–53. http://dx.doi.org/10.4171/rsmup/130-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Itenberg, I. B., V. M. Kharlamov, and E. I. Shustin. "Logarithmic equivalence of Welschinger and Gromov-Witten invariants." Russian Mathematical Surveys 59, no. 6 (December 31, 2004): 1093–116. http://dx.doi.org/10.1070/rm2004v059n06abeh000797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ding, Yanqiao. "Genus decreasing formula for higher genus Welschinger invariants." Mathematische Zeitschrift 296, no. 3-4 (January 31, 2020): 969–85. http://dx.doi.org/10.1007/s00209-020-02458-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Itenberg, Ilia, Viatcheslav Kharlamov, and Eugenii Shustin. "Welschinger invariants of small non-toric Del Pezzo surfaces." Journal of the European Mathematical Society 15, no. 2 (2013): 539–94. http://dx.doi.org/10.4171/jems/367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ding, Yanqiao, and Jianxun Hu. "Welschinger invariants of blow-ups of symplectic 4-manifolds." Rocky Mountain Journal of Mathematics 48, no. 4 (August 2018): 1105–44. http://dx.doi.org/10.1216/rmj-2018-48-4-1105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shustin, Eugenii. "On Higher Genus Welschinger Invariants of del Pezzo Surfaces." International Mathematics Research Notices 2015, no. 16 (September 20, 2014): 6907–40. http://dx.doi.org/10.1093/imrn/rnu148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Itenberg, Ilia, Viatcheslav Kharlamov, and Eugenii Shustin. "Welschinger invariants of real Del Pezzo surfaces of degree ≥ 3." Mathematische Annalen 355, no. 3 (March 21, 2012): 849–78. http://dx.doi.org/10.1007/s00208-012-0801-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Invariants de Welschinger"

1

Puignau, Nicolas. "Première classe de Stiefel-Whitney de l'espace des applications stables réelles en genre zéro." Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00162595.

Full text
Abstract:
Nous étudions les espaces de modules pour les applications stables de genre zéro à $k$ points marqués réalisant une classe d'homologie $\beta$ dans une variété complexe $X$ projective et lisse. Ces espaces sont habituellement notés $\overline{\mathcal{M}}_{0,k}(\beta,X)$ ou $\overline{\mathcal{M}}_k^{\beta}(X)$.
Lorsque $X$ est une variété convexe, ce sont des orbivariétés projectives normales. Lorsque $X$ est une variété réelle, ils possèdent naturellement une structure réelle dont la partie réelle, notée $\mathbb{R}\overline{\mathcal{M}}_k^{\beta}(X)$, hérite des mêmes propriétés. L'étude de ces espaces a des applications importantes en géométrie énumérative.
Dans cette thèse on détermine un représentant spécifique, en termes géométriques, pour la première classe de Stiefel-Whitney de tels espaces. Nommément, nous donnons une description de cette classe pour $\mathbb{R}\overline{\mathcal{M}}_{c_1(X)\beta-1}^{\beta}(X)$ où $X$ est une surface réelle convexe quelconque. Ensuite, nous réalisons un tel calcul pour $\mathbb{R}\overline{\mathcal{M}}_{2d}^{d[L]}(\mathbb{C}P^3)$ où $d \in \N$ est un degré (et $[L]$ la classe de la droite dans $\mathbb{C}P^3$).
APA, Harvard, Vancouver, ISO, and other styles
2

Blomme, Thomas. "Computation of Refined Enumerative Invariants in Real and Tropical Geometry." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS016.

Full text
Abstract:
La géométrie tropicale a permis le calcul de nombreux invariants de géométrie complexe (invariants de Gromov-Witten), ainsi que réelle (invariants de Welschinger) à travers l'utilisation de théorèmes de correspondance. Ceux-ci mettent à jour des liens profonds entre la géométrie tropicale et la géométrie dite classique. La richesse des objets tropicaux alliée à leur simplicité apparente a également permis de proposer de nouveaux invariants, dits raffinés, dont les interprétations en géométrie classique restent à ce jour encore mystérieuses, bien que plusieurs conjectures, comme celle de Göttsche-Shende, laissent présager d'une connexion profonde avec certaines quantités géométriques classiques. Une de ces interprétations est proposée par Mikhalkin en 2015, à travers le comptage de courbes rationnelles réelles dans les surfaces toriques, en fonction de la valeur d'un "indice quantique". Les courbes comptées sont astreintes à passer par certains points réels ou complexes conjugués situés sur les diviseurs toriques de la surface, et le résultat s'avère ne dépendre que du nombre de points complexes. Dans le cas où les points sont réels, Mikhalkin relie l'invariant classique ainsi obtenu aux invariants tropicaux raffinés. En donnant une manière de calculer l'indice quantique d'une courbe rationnelle quelconque, nous étendons ensuite cette relation entre invariants classiques et tropicaux dans le cas où certains des points de la configuration sont imaginaires purs, et fournissons une formule récursive qui permet un calcul effectif de ces invariants raffinés tropicaux. Enfin, on propose une généralisation des invariants raffinés au cas de variétés toriques de dimension arbitraire
Tropical geometry enabled the computation of numerous invariants in complex geometry (Gromov-Witten invariants), as well as in real geometry (Welschinger invariants) using correspondence theorems. These theorems reveal a deep connection between tropical geometry and classical geometry. The richness of tropical objects coupled with their simplicity of use also enabled the definition of tropical refined invariants, whose interpretation on the classical geometry side remains quite mysterious, although several conjectures, the Göttsche-Shende conjecture, suggest an even deeper connection to other classical geometric quantities. One such interpretation is proposed by Mikhalkin in 2015, through the counting of real rational curves in toric surfaces, according to the value of a so-called "quantum index". The refined count of curves, which have to pass through some real and complex conjugated points chosen on the toric boundary of the surface, happens to depend only on the number of complex points on each divisor. In the case where all the chosen points are real, Mikhalkin related the obtained invariant to tropical refined invariants. After giving a way of computing the quantum index of rational curves, we extend this relation between classical and tropical invariants in the case where some of the points of the configuration are purely imaginary, and we give a recursive formula that allows one to compute the involved tropical refined invariants. Finally, we propose a generalization of these refined tropical invariants in toric varieties of higher dimension
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Invariants de Welschinger"

1

Itenberg, Ilia, Viatcheslav Kharlamov, and Eugenii Shustin. "Welschinger Invariants Revisited." In Trends in Mathematics, 239–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52471-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shustin, Eugenii. "On Welschinger Invariants of Descendant Type." In Singularities and Computer Algebra, 275–304. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28829-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography