Academic literature on the topic 'Invarianzprinzip'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Invarianzprinzip.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Invarianzprinzip"
Scholl, Tessina H., Veit Hagenmeyer, and Lutz Gröll. "Grundprinzipien für die Abschätzung von Einzugsbereichen in Totzeitsystemen." at - Automatisierungstechnik 68, no. 8 (August 27, 2020): 667–86. http://dx.doi.org/10.1515/auto-2020-0034.
Full textDissertations / Theses on the topic "Invarianzprinzip"
Paulsen, Michael Christoph. "Limit theorems for limit order books." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/17023.
Full textIn the first part of the thesis, we define a random state-dependent discrete model of a two-sided limit order book in terms of its key quantities best bid [ask] price and the standing buy [sell] volume density. For a simple scaling that introduces a slow time scaling, that is equivalent to the classical law of large numbers, for the bid/ask prices and a faster time scale for the limit volume placements/cancelations, that keeps the expected volume rate over the considered price interval invariant, we prove a limit theorem. The limit theorem states that, given regularity conditions on the random order flow, the key quantities converge in the sense of a strong law of large numbers to a tractable continuous limiting model. The limiting model is such that the best bid and ask price dynamics can be described in terms of two coupled ODE:s, while the dynamics of the relative buy and sell volume density functions are given as the unique solutions of two linear first-order hyperbolic PDE:s with variable coefficients, specified by the expectation of the order flow parameters. In the second part, we prove a functional central limit theorem i.e. an invariance principle for an order book model with block shaped volume densities close to the spread. The weak limit of the two-dimensional price process (best bid and ask price) is given by a semi-martingale reflecting Brownian motion in the set of admissible prices. Simultaneously, the relative buy and sell volume densities close to the spread converge weakly to the modulus of a two-parameter Brownian motion. We also demonstrate an example how to easily derive an SPDE for the relative volume densities in a simple case, when a strong stationarity assumption is made on the limit order placements and cancelations for the model suggested in the first part. In the third and final part of the thesis, we prove an averaging and an invariance principle for discrete processes taking values in Banach and Hilbert spaces, respectively.
Book chapters on the topic "Invarianzprinzip"
Grieser, Daniel. "Das Invarianzprinzip." In Mathematisches Problemlösen und Beweisen, 229–55. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-8348-2460-8_12.
Full textGrieser, Daniel. "Das Invarianzprinzip." In Mathematisches Problemlösen und Beweisen, 247–75. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14765-5_12.
Full textCarl, Merlin. "Das Invarianzprinzip." In Wie kommt man darauf?, 59–73. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18250-2_5.
Full textLanders, Dieter, and Lothar Rogge. "Das Invarianzprinzip in D[0, 1]." In Nichtstandard Analysis, 396–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57915-8_35.
Full text"9. Invarianzprinzip und Fundamentallösung." In Differentialgleichungen und Mathematische Modellbildung, 310–30. De Gruyter, 2017. http://dx.doi.org/10.1515/9783110495522-013.
Full text"15. Donskers Invarianzprinzip und die Brownsche Bewegung." In Martingale und Prozesse, 169–78. De Gruyter, 2018. http://dx.doi.org/10.1515/9783110350685-015.
Full text