Academic literature on the topic 'Inverse integrating factor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inverse integrating factor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inverse integrating factor"
Chavarriga, Javier, Hector Giacomini, Jaume Giné, and Jaume Llibre. "Darboux integrability and the inverse integrating factor." Journal of Differential Equations 194, no. 1 (October 2003): 116–39. http://dx.doi.org/10.1016/s0022-0396(03)00190-6.
Full textGarcía, Isaac A., and Maite Grau. "A Survey on the Inverse Integrating Factor." Qualitative Theory of Dynamical Systems 9, no. 1-2 (July 30, 2010): 115–66. http://dx.doi.org/10.1007/s12346-010-0023-8.
Full textALGABA, ANTONIO, CRISTÓBAL GARCÍA, and JAUME GINÉ. "Nilpotent centres via inverse integrating factors." European Journal of Applied Mathematics 27, no. 5 (March 23, 2016): 781–95. http://dx.doi.org/10.1017/s0956792516000103.
Full textGarcía, Isaac A., Héctor Giacomini, and Maite Grau. "The inverse integrating factor and the Poincaré map." Transactions of the American Mathematical Society 362, no. 07 (February 17, 2010): 3591–612. http://dx.doi.org/10.1090/s0002-9947-10-05014-2.
Full textLlibre, Jaume, Chara Pantazi, and Sebastian Walcher. "Morphisms and inverse problems for Darboux integrating factors." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 143, no. 6 (December 2013): 1291–302. http://dx.doi.org/10.1017/s0308210511001430.
Full text李, 红伟. "Finding Integrating Factor or Inverse by Invariant Algebraic Curves." Pure Mathematics 10, no. 06 (2020): 593–98. http://dx.doi.org/10.12677/pm.2020.106072.
Full textGiacomini, Héctor, Jaume Giné, and Maite Grau. "Linearizable planar differential systems via the inverse integrating factor." Journal of Physics A: Mathematical and Theoretical 41, no. 13 (March 17, 2008): 135205. http://dx.doi.org/10.1088/1751-8113/41/13/135205.
Full textGarcía, Isaac A. "Formal Inverse Integrating Factor and the Nilpotent Center Problem." International Journal of Bifurcation and Chaos 26, no. 01 (January 2016): 1650015. http://dx.doi.org/10.1142/s0218127416500152.
Full textGiné, Jaume. "The nondegenerate center problem and the inverse integrating factor." Bulletin des Sciences Mathématiques 130, no. 2 (March 2006): 152–61. http://dx.doi.org/10.1016/j.bulsci.2005.09.001.
Full textAlgaba, Antonio, Natalia Fuentes, Cristóbal García, and Manuel Reyes. "Non-formally integrable centers admitting an algebraic inverse integrating factor." Discrete & Continuous Dynamical Systems - A 38, no. 3 (2018): 967–88. http://dx.doi.org/10.3934/dcds.2018041.
Full textDissertations / Theses on the topic "Inverse integrating factor"
Ferragut, i. Amengual Antoni. "Polynomial inverse integrating factors of quadratic differential systems and other results." Doctoral thesis, Universitat Autònoma de Barcelona, 2006. http://hdl.handle.net/10803/3093.
Full textLa primera part
En l'estudi dels sistemes diferencials plans el coneixement d'una integral primera és molt important. Els seus conjunts de nivell estan formats per òrbites i ens permeten dibuixar el retrat de fase del sistema, objectiu principal de la teoria qualitativa de les equacions diferencials al pla. Com ja se sap, existeix una bijecció entre l'estudi de les integrals primeres i l'estudi dels inversos de factor integrant. De fet, és més senzill l'estudi dels inversos de factor integrant que el de les integrals primeres. Una classe és dels sistemes quadràtics àmpliament estudiada dins els sistemes diferencials al pla és la dels sistemes quadràtics. Hi ha més d'un miler d'articles publicats sobre aquest tipus de sistemes, però encara som lluny de conèixer quins d'aquests sistemes són integrables, és a dir, si tenen una integral primera.
En aquest treball, estudiam els sistemes quadràtics que tenen un invers de factor integrant polinomial V = V(x, y), i per tant també tenen una integral primera, definida allà on no s'anul·la. Aquesta classe de sistemes diferencials és important per diferents motius:
1. La integral primera és sempre Darboux.
2. Conté la classe dels sistemes quàdratics homogenis, àmpliament estudiada (Date, Sibirskii, Vulpe...).
3. Conté la classe dels sistemes quàdratics amb un centre, també estudiada (Dulac, Kapteyn, Bautin,...).
4. Conté la classe dels sistemes quàdratics Hamiltonians (Artés, Llibre, Vulpe).
5. Conté la classe dels sistemes quàdratics amb una integral primera polinomial (Chavarriga, García, Llibre, Pérez de Rio, Rodríguez).
6. Conté la classe dels sistemes quàdratics amb una integral primera racional de grau dos (Cairó, Llibre).
La segona part
Presentam els següents tres articles:
1. A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrating factors for polynomial vector ?elds, to appear in Discrete and Continuous Dynamical Systems.
2. A. Ferragut, J. Llibre and M.A. Teixeira, Periodic orbits for a class of C(1) three-dimensional systems, submitted.
3. A. Ferragut, J. Llibre and M.A. Teixeira, Hyperbolic periodic orbits coming from the bifurcation of a 4-dimensional non-linear center, to appear in Int. J. Of Bifurcation and Chaos.
En el primer article donam tres resultats principals. Primer provam que un camp vectorial polinomial que té una integral primera polinomial té un invers de factor integrant polinomial. El segon resultat és un exemple d'un camp vectorial polinomial que té una integral primera racional i no té ni una integral primera polinomial ni un invers de factor integrant polinomial. Era un problema obert el fet de sebre si existien camps vectorials polinomials veri?cant aquestes condicions. El tercer resultat és un exemple d'un camp vectorial polinomial que té un centre i no té invers de factor integrant polinomial. Un exemple d'aquest tipus era esperat però desconegut en la literatura.
En el segon article estudiam camps vectorials polinomials reversibles de grau quatre en R(3) que tenen, sota certes condicions genèriques, un nombre arbitrari d'-orbitesperi-odiques hiperb-oliques. Sense aquestes condicions, tenen un nombre arbitrari d'òrbites periòdiques hiperbòliques. Sense aquestes condicions, tenen un nombre arbitrari d'òrbites periòdiques.
Finalment, en el tercer article, estudiam la pertorbació d'un centre de R(4) que prove d'un problema de la física. Mitjançant la teoria dels termes mitjans de primer ordre dins els camps vectorials polinomials de grau quatre, el sistema pertorbat pot tenir fins a setze òrbites periòdiques hiperbòliques bifurcant de les òrbites peròdiques del centre.
This thesis is divided into two different parts. In the first one, we study the quadratic systems (polynomial systems of degree two) having a polynomial inverse integrating factor. In the second one, we study three different problems related to polynomial differential systems.
The ?rst part.
It is very important, for planar differential systems, the knowledge of a ?rst integral. Its level sets are formed by orbits and they let us draw the phase portrait of the system, which is the main objective of the qualitative theory of planar differential equations.
As it is known, there is a bijection between the study of the ?rst integrals and the study of inverse integrating factors. In fact, it is easier to study the inverse integrating factors than the ?rst integrals.
A widely studied class of planar differential systems is the quadratic one. There are more than a thousand published articles about this subject of differential systems, but we are far away of knowing which quadratic systems are integrable, that is, if they have a ?rst integral.
In this work, we study the quadratic systems having a polynomial inverse integrating factor V = V (x, y), so they also have a ?rst integral, de?ned where V does not vanish. This class of quadratic systems is important for several reasons:
1. The ?rst integral is always Darboux.
2. It contains the class of homogeneous quadratic system, widely studied (Date, Sibirskii, Vulpe,...).
3. It contains the class of quadratic systems having a center, also studied (Dulac, Kapteyn, Bautin,...).
4. It contains the class of Hamiltonian quadratic systems (Artés, Llibre, Vulpe).
5. It contains the class of quadratic systems having a polynomial ?rst integral (Chavarriga, García, Llibre, Pérez de Rio, Rodríguez).
6. It contains the class of quadratic systems having a rational ?rst integral of de gree two (Cairó, Llibre).
The classi?cation of the quadratic systems having a polynomial inverse integrating factor is not completely ?nished. There remain near a 5% of the cases to study. We leave their study for an immediate future.
The second part.
We present the following three articles:
1. A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrating factors for polynomial vector ?elds, to appear in Discrete and Continuous Dynamical Systems.
2. A. Ferragut, J. Llibre and M.A. Teixeira, Periodic orbits for a class of C(1) three-dimensional systems, submitted.
3. A. Ferragut, J. Llibre and M.A. Teixeira, Hyperbolic periodic orbits coming from the bifurcation of a 4-dimensional non-linear center, to appear in Int. J. Of Bifurcation and Chaos.
In the first article we give three main results. First we prove that a polynomial vector field having a polynomial must have a polynomial inverse integrating factor. The second one is an example of a polynomial vector ?eld having a rational ?rst integral and having neither polynomial ?rst integral nor polynomial inverse integrating factor. It was an open problem to know if there exist polynomial vector ?elds verifying these conditions. The third one is an example of a polynomial vector ?eld having a center and not having a polynomial inverse integrating factor. An example of this type was expected but unknown in the literature.
In the second article we study reversible polynomial vector ?elds of degree four in R(3) which have, under certain generic conditions, an arbitrary number of hyperbolic periodic orbits. Without these conditions, they have an arbitrary number of periodic orbits.
Finally, in the third article, we study the perturbation of a center in R(4) which comes from a problem of physics. By the ?rst order averaging theory and perturbing inside the polynomial vector ?elds of degree four, the perturbed system may have at most sixteen hyperbolic periodic orbits bifurcating from the periodic orbits of the center.
Kirsten, André Luís. "Reator eletrônico para lâmpadas de descarga em alta pressão baseado no conversor biflyback inversor." Universidade Federal de Santa Maria, 2011. http://repositorio.ufsm.br/handle/1/8494.
Full textThe study of the best utilization of high intensity discharge lamps deals with the great global concern with energy efficiency. Electronic ballasts are the current devices that can make the good use of high luminous efficacy and the long useful life of these lamps. This work aims to develop an electronic ballast to supply high intensity discharge lamps. In order to avoid the acoustic resonance phenomenon occurrence, the lamp is supplied with low frequency square waveform. Power control and voltage inversion stage in the lamp are developed by the biflyback inverter topology. The analysis and design of this topology were performed, as well as the development of resonant inversion methodology of the lamp voltage. It is proposed one study, qualitative and quantitative, of active converters to provide the power factor correction, and their integration with the biflyback inverter topology. Buck biflyback inverter topology is chosen to the implementation of practical experiments, in order to validate the present work. The converter modeling, considering the lamp dynamic, such as the stability analysis and theoretical control strategy of current and lamp power are presented. Experimental results show that the proposed electronic ballast has the follow characteristics: high power factor (0.97), low input current harmonic distortion, high efficiency (88%) and not visible occurrence of acoustic resonance phenomenon.
O estudo do melhor aproveitamento das características das lâmpadas de descarga em alta pressão vem ao encontro da grande preocupação mundial com a eficientização energética. Reatores eletrônicos são os dispositivos atuais que melhor aproveitam a alta eficácia luminosa e longa vida útil dessas lâmpadas. Este trabalho visa o desenvolvimento de um reator eletrônico para a alimentação de lâmpadas de descarga em alta pressão. De modo a não excitar a ocorrência do fenômeno de ressonância acústica, a alimentação da lâmpada é realizada através de forma de onda de corrente quadrada em baixa frequência. Os estágios de controle de potência e inversão da tensão na lâmpada são realizados pela topologia biflyback inversora. A análise e projeto desta topologia foram realizados, assim como o desenvolvimento de uma metodologia de inversão ressonante da tensão da lâmpada. É proposto um estudo, qualitativo e quantitativo, dos conversores ativos para correção do fator de potência, e a integração destes, com a topologia biflyback inversora. A topologia buck biflyback inversora foi escolhida para a realização de experimentos práticos para a validação do trabalho. A modelagem do conversor, considerando a dinâmica de uma lâmpada de descarga em alta pressão de sódio foi realizada. Assim como a análise da estabilidade e estratégias de controle da corrente e da potência na lâmpada. Os resultados experimentais comprovam que o reator eletrônico proposto apresenta as características desejadas de: alto fator de potência (0,97), atendimento da norma IEC61000-3-2 para o nível das harmônicas da corrente de entrada, elevado rendimento (88%) e não excitação visível do fenômeno de ressonância acústica.
Book chapters on the topic "Inverse integrating factor"
Algaba, Antonio, Natalia Fuentes, Cristóbal García, and Manuel Reyes. "Algebraic Inverse Integrating Factors for a Class of Generalized Nilpotent Systems." In SEMA SIMAI Springer Series, 287–300. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32013-7_16.
Full textDécieux, Jean Philippe, and Elke Murdock. "Sense of Belonging: Predictors for Host Country Attachment Among Emigrants." In IMISCOE Research Series, 265–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67498-4_15.
Full textAmelung, Nina, Rafaela Granja, and Helena Machado. "Conclusion." In Modes of Bio-Bordering, 137–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8183-0_9.
Full textFreudlsperger, Christian. "More Voice, Less Exit." In Trade Policy in Multilevel Government, 12–50. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198856122.003.0002.
Full textMutohar, Agus, and Joan E. Hughes. "Toward Web 2.0 Integration in Indonesian Education." In Professional Development and Workplace Learning, 1867–84. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8632-8.ch102.
Full textAlpoim, Ângela, João Lopes, Tiago André Saraiva Guimarães, Carlos Filipe Portela, and Manuel Filipe Santos. "A Framework to Evaluate Big Data Fabric Tools." In Advances in Business Information Systems and Analytics, 180–91. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5781-5.ch009.
Full textAl-Busaidy, Moaman, and Vishanth Weerakkody. "E-Government Implementation in Oman." In E-Government Development and Diffusion, 272–80. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-713-3.ch015.
Full textVerhagen, Wim J. C., and Thijs Oudkerk. "Use of Textual Elements to Improve Reliability Prediction for Aircraft Component Behavior." In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200116.
Full textDahan, Fadl, Khalil El Hindi, and Ahmed Ghoneim. "An Adapted Ant-Inspired Algorithm for Enhancing Web Service Composition." In Web Services, 904–21. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7501-6.ch049.
Full textBroekaert, Wim, and Arjan Zuiderhoek. "Capital Goods in the Roman Economy." In Capital, Investment, and Innovation in the Roman World, 99–146. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198841845.003.0004.
Full textConference papers on the topic "Inverse integrating factor"
GARCÍA, I. A., and D. S. SHAFER. "LIMIT SETS OF PLANAR VECTOR FIELDS AND THE VANISHING SET OF INVERSE INTEGRATING FACTORS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0051.
Full textDerbanne, Quentin, Guillaume de Hauteclocque, and Martin Dumont. "How to Account for Short-Term and Long-Term Variability in the Prediction of the 100 Years Response?" In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61701.
Full textSalisbury, Shaun M., Matthew R. Jones, Brent W. Webb, and Vladimir P. Solovjov. "Sensitivity Analysis of an Inverse Method for Characterizing Industrial Foams." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72720.
Full textWehage, R. A. "Solution of Multibody Dynamics Using Natural Factors and Iterative Refinement: Part I — Open Kinematic Loops." In ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0115.
Full textQuach, Nhi V., Quang N. Pham, Ju-Hwan Han, Youngjoon Suh, Jin-Seong Park, and Yoonjin Won. "Surface Engineering Through Atomic Layer Deposition on Three-Dimensionally Structured Materials." In ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipack2020-2613.
Full textZhu, Xian-Kui. "Improved Elastic Compliance Equation and its Inverse Solution for Compact Tension Specimens." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65406.
Full textJung, Ki Wook, Sougata Hazra, Heungdong Kwon, Alisha Piazza, Edward Jih, Mehdi Asheghi, Man Prakash Gupta, Mike Degner, and Kenneth E. Goodson. "Parametric Study of Silicon-Based Embedded Microchannels With 3D Manifold Coolers (EMMC) for High Heat Flux (~1 kW/cm2) Power Electronics Cooling." In ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ipack2019-6472.
Full textBatura, Anatolii, Igor Orynyak, and Andrii Oryniak. "Semianalytical Method for the SIF Calculation for a Crack of Arbitrary Shape in Infinite Body." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28383.
Full textBuono, Mario, Sonia Capece, and Francesca Cascone. "Industrial design for aircraft: models and usability for comfort in the cabin." In Systems & Design: Beyond Processes and Thinking. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/ifdp.2016.3296.
Full textAl-Qasim, Abdulaziz S., and Mohammed Alasker. "Asphaltenes: What Do We Know So Far." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62366.
Full text