Journal articles on the topic 'Inverse Uncertainty Quantification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Inverse Uncertainty Quantification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Faes, Matthias, and David Moens. "Inverse Interval Field Quantification via Digital Image Correlation." Applied Mechanics and Materials 885 (November 2018): 304–10. http://dx.doi.org/10.4028/www.scientific.net/amm.885.304.
Full textHossen, MD Fayaz Bin, Tareq Alghamdi, Manal Almaeen, and Yaohang Li. "Bayesian Neural Network Variational Autoencoder Inverse Mapper (BNN-VAIM) and its application in Compton Form Factors extraction." Journal of Instrumentation 19, no. 08 (2024): C08003. http://dx.doi.org/10.1088/1748-0221/19/08/c08003.
Full textWu, Tailin, Willie Neiswanger, Hongtao Zheng, Stefano Ermon, and Jure Leskovec. "Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 1 (2024): 320–28. http://dx.doi.org/10.1609/aaai.v38i1.27785.
Full textTalarico, Erick Costa e. Silva, Dario Grana, Leandro Passos de Figueiredo, and Sinesio Pesco. "Uncertainty quantification in seismic facies inversion." GEOPHYSICS 85, no. 4 (2020): M43—M56. http://dx.doi.org/10.1190/geo2019-0392.1.
Full textKhuwaileh, B. A., and H. S. Abdel-Khalik. "Subspace-based Inverse Uncertainty Quantification for Nuclear Data Assessment." Nuclear Data Sheets 123 (January 2015): 57–61. http://dx.doi.org/10.1016/j.nds.2014.12.010.
Full textTenorio, L., F. Andersson, M. de Hoop, and P. Ma. "Data analysis tools for uncertainty quantification of inverse problems." Inverse Problems 27, no. 4 (2011): 045001. http://dx.doi.org/10.1088/0266-5611/27/4/045001.
Full textSethurajan, Athinthra, Sergey Krachkovskiy, Gillian Goward, and Bartosz Protas. "Bayesian uncertainty quantification in inverse modeling of electrochemical systems." Journal of Computational Chemistry 40, no. 5 (2018): 740–52. http://dx.doi.org/10.1002/jcc.25759.
Full textSoibam, Jerol, Ioanna Aslanidou, Konstantinos Kyprianidis, and Rebei Bel Fdhila. "Inverse flow prediction using ensemble PINNs and uncertainty quantification." International Journal of Heat and Mass Transfer 226 (July 2024): 125480. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2024.125480.
Full textGrana, Dario, Leandro Passos de Figueiredo, and Leonardo Azevedo. "Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction." GEOPHYSICS 84, no. 6 (2019): M15—M24. http://dx.doi.org/10.1190/geo2019-0222.1.
Full textAcar, Pınar. "Uncertainty Quantification for Ti-7Al Alloy Microstructure with an Inverse Analytical Model (AUQLin)." Materials 12, no. 11 (2019): 1773. http://dx.doi.org/10.3390/ma12111773.
Full textHashemi, H., R. Berndtsson, M. Kompani-Zare, and M. Persson. "Natural vs. artificial groundwater recharge, quantification through inverse modeling." Hydrology and Earth System Sciences 17, no. 2 (2013): 637–50. http://dx.doi.org/10.5194/hess-17-637-2013.
Full textHashemi, H., R. Berndtsson, M. Kompani-Zare, and M. Persson. "Natural vs. artificial groundwater recharge, quantification through inverse modeling." Hydrology and Earth System Sciences Discussions 9, no. 8 (2012): 9767–807. http://dx.doi.org/10.5194/hessd-9-9767-2012.
Full textLiu, Mingliang, Dario Grana, and Leandro Passos de Figueiredo. "Uncertainty quantification in stochastic inversion with dimensionality reduction using variational autoencoder." GEOPHYSICS 87, no. 2 (2021): M43—M58. http://dx.doi.org/10.1190/geo2021-0138.1.
Full textZhang, Yiming, Zhiwei Pan, Shuyou Zhang, and Na Qiu. "Probabilistic invertible neural network for inverse design space exploration and reasoning." Electronic Research Archive 31, no. 2 (2022): 860–81. http://dx.doi.org/10.3934/era.2023043.
Full textDomitr, Paweł, Mateusz Włostowski, Rafał Laskowski, and Romuald Jurkowski. "Comparison of inverse uncertainty quantification methods for critical flow test." Energy 263 (January 2023): 125640. http://dx.doi.org/10.1016/j.energy.2022.125640.
Full textDashti, M., and A. M. Stuart. "Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem." SIAM Journal on Numerical Analysis 49, no. 6 (2011): 2524–42. http://dx.doi.org/10.1137/100814664.
Full textTian, Yuhang, Yuan Feng, and Wei Gao. "Virtual Modelling Framework-Based Inverse Study for the Mechanical Metamaterials with Material Nonlinearity." Modelling 6, no. 1 (2025): 24. https://doi.org/10.3390/modelling6010024.
Full textYablokov, A. V., and A. S. Serdyukov. "Uncertainty quantification of phase velocity surface waves multy-modal inversion using machine learning." Interexpo GEO-Siberia 2, no. 2 (2022): 312–18. http://dx.doi.org/10.33764/2618-981x-2022-2-2-312-318.
Full textBernardara, Pietro, Etienne de Rocquigny, Nicole Goutal, Aurélie Arnaud, and Giuseppe Passoni. "Uncertainty analysis in flood hazard assessment: hydrological and hydraulic calibrationThis article is one of a selection of papers published in this Special Issue on Hydrotechnical Engineering." Canadian Journal of Civil Engineering 37, no. 7 (2010): 968–79. http://dx.doi.org/10.1139/l10-056.
Full textMalinverno, Alberto, and Victoria A. Briggs. "Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes." GEOPHYSICS 69, no. 4 (2004): 1005–16. http://dx.doi.org/10.1190/1.1778243.
Full textBardsley, Johnathan M., and Colin Fox. "An MCMC method for uncertainty quantification in nonnegativity constrained inverse problems." Inverse Problems in Science and Engineering 20, no. 4 (2012): 477–98. http://dx.doi.org/10.1080/17415977.2011.637208.
Full textLiu, Junhong, Shanfang Huang, Xiaoyu Guo, Jiageng Wang, and Kan Wang. "INVERSE UNCERTAINTY QUANTIFICATION OF CTF PHYSICAL MODEL PARAMETERS USING BAYESIAN INFERENCE." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2019.27 (2019): 1435. http://dx.doi.org/10.1299/jsmeicone.2019.27.1435.
Full textLu, Yen-An, Wei-Shou Hu, Joel A. Paulson, and Qi Zhang. "BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification." Computers & Chemical Engineering 192 (January 2025): 108859. http://dx.doi.org/10.1016/j.compchemeng.2024.108859.
Full textNagel, Joseph B., and Bruno Sudret. "A unified framework for multilevel uncertainty quantification in Bayesian inverse problems." Probabilistic Engineering Mechanics 43 (January 2016): 68–84. http://dx.doi.org/10.1016/j.probengmech.2015.09.007.
Full textKlein, Olaf, Daniele Davino, and Ciro Visone. "On forward and inverse uncertainty quantification for models involving hysteresis operators." Mathematical Modelling of Natural Phenomena 15 (2020): 53. http://dx.doi.org/10.1051/mmnp/2020009.
Full textYang, Xiu, Weixuan Li, and Alexandre Tartakovsky. "Sliced-Inverse-Regression--Aided Rotated Compressive Sensing Method for Uncertainty Quantification." SIAM/ASA Journal on Uncertainty Quantification 6, no. 4 (2018): 1532–54. http://dx.doi.org/10.1137/17m1148955.
Full textRepetti, Audrey, Marcelo Pereyra, and Yves Wiaux. "Scalable Bayesian Uncertainty Quantification in Imaging Inverse Problems via Convex Optimization." SIAM Journal on Imaging Sciences 12, no. 1 (2019): 87–118. http://dx.doi.org/10.1137/18m1173629.
Full textGiordano, Matteo, and Hanne Kekkonen. "Bernstein--von Mises Theorems and Uncertainty Quantification for Linear Inverse Problems." SIAM/ASA Journal on Uncertainty Quantification 8, no. 1 (2020): 342–73. http://dx.doi.org/10.1137/18m1226269.
Full textFang, Zhilong, Curt Da Silva, Rachel Kuske, and Felix J. Herrmann. "Uncertainty quantification for inverse problems with weak partial-differential-equation constraints." GEOPHYSICS 83, no. 6 (2018): R629—R647. http://dx.doi.org/10.1190/geo2017-0824.1.
Full textWang, Chen, Xu Wu, Ziyu Xie, and Tomasz Kozlowski. "Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference." Energies 16, no. 22 (2023): 7664. http://dx.doi.org/10.3390/en16227664.
Full textMost, Thomas. "Inverse Uncertainty Quantification in Material Parameter Calibration Using Probabilistic and Interval Approaches." Applied Mechanics 6, no. 1 (2025): 14. https://doi.org/10.3390/applmech6010014.
Full textSuper, Ingrid, Stijn N. C. Dellaert, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon. "Uncertainty analysis of a European high-resolution emission inventory of CO<sub>2</sub> and CO to support inverse modelling and network design." Atmospheric Chemistry and Physics 20, no. 3 (2020): 1795–816. http://dx.doi.org/10.5194/acp-20-1795-2020.
Full textHonjo, Yusuke, and Thuraisamy Thavaraj. "On uncertainty evaluation of contaminant migration through clayey barriers." Canadian Geotechnical Journal 31, no. 5 (1994): 637–48. http://dx.doi.org/10.1139/t94-076.
Full textZhou, Qing, Xin’an Wang, and Feng Mao. "Numerical analysis of a water-LBE interaction experiment: Sensitivity analysis, inverse uncertainty quantification and uncertainty propagation." Nuclear Engineering and Design 438 (July 2025): 114035. https://doi.org/10.1016/j.nucengdes.2025.114035.
Full textBerg, Steffen, Evren Unsal, and Harm Dijk. "Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling." Computers and Geotechnics 132 (April 2021): 103964. http://dx.doi.org/10.1016/j.compgeo.2020.103964.
Full textde Vries, Kevin, Anna Nikishova, Benjamin Czaja, Gábor Závodszky, and Alfons G. Hoekstra. "INVERSE UNCERTAINTY QUANTIFICATION OF A CELL MODEL USING A GAUSSIAN PROCESS METAMODEL." International Journal for Uncertainty Quantification 10, no. 4 (2020): 333–49. http://dx.doi.org/10.1615/int.j.uncertaintyquantification.2020033186.
Full textFaes, Matthias, Matteo Broggi, Edoardo Patelli, et al. "A multivariate interval approach for inverse uncertainty quantification with limited experimental data." Mechanical Systems and Signal Processing 118 (March 2019): 534–48. http://dx.doi.org/10.1016/j.ymssp.2018.08.050.
Full textHu, Guojun, and Tomasz Kozlowski. "Inverse uncertainty quantification of trace physical model parameters using BFBT benchmark data." Annals of Nuclear Energy 96 (October 2016): 197–203. http://dx.doi.org/10.1016/j.anucene.2016.05.021.
Full textWu, Xu, Koroush Shirvan, and Tomasz Kozlowski. "Demonstration of the relationship between sensitivity and identifiability for inverse uncertainty quantification." Journal of Computational Physics 396 (November 2019): 12–30. http://dx.doi.org/10.1016/j.jcp.2019.06.032.
Full textLan, Shiwei, Shuyi Li, and Babak Shahbaba. "Scaling Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neural Networks." SIAM/ASA Journal on Uncertainty Quantification 10, no. 4 (2022): 1684–713. http://dx.doi.org/10.1137/21m1439456.
Full textDixon, J. R., B. A. Lindley, T. Taylor, and G. T. Parks. "DATA ASSIMILATION APPLIED TO PRESSURISED WATER REACTORS." EPJ Web of Conferences 247 (2021): 09020. http://dx.doi.org/10.1051/epjconf/202124709020.
Full textMa, Xiaopeng, Kai Zhang, Liming Zhang, et al. "Data-Driven Niching Differential Evolution with Adaptive Parameters Control for History Matching and Uncertainty Quantification." SPE Journal 26, no. 02 (2021): 993–1010. http://dx.doi.org/10.2118/205014-pa.
Full textAbdollahzadeh, Asaad, Alan Reynolds, Mike Christie, David Corne, Brian Davies, and Glyn Williams. "Bayesian Optimization Algorithm Applied to Uncertainty Quantification." SPE Journal 17, no. 03 (2012): 865–73. http://dx.doi.org/10.2118/143290-pa.
Full textLartaud, Paul, Philippe Humbert, and Josselin Garnier. "Uncertainty quantification in Bayesian inverse problems with neutron and gamma time correlation measurements." Annals of Nuclear Energy 213 (April 2025): 111123. https://doi.org/10.1016/j.anucene.2024.111123.
Full textBanks, H. T., Kathleen Holm, and Danielle Robbins. "Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping." Mathematical and Computer Modelling 52, no. 9-10 (2010): 1610–25. http://dx.doi.org/10.1016/j.mcm.2010.06.026.
Full textLi, Weixuan, Guang Lin, and Bing Li. "Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice." Journal of Computational Physics 321 (September 2016): 259–78. http://dx.doi.org/10.1016/j.jcp.2016.05.040.
Full textZhang, Chi, Martin F. Lambert, Jinzhe Gong, Aaron C. Zecchin, Angus R. Simpson, and Mark L. Stephens. "Bayesian Inverse Transient Analysis for Pipeline Condition Assessment: Parameter Estimation and Uncertainty Quantification." Water Resources Management 34, no. 9 (2020): 2807–20. http://dx.doi.org/10.1007/s11269-020-02582-9.
Full textPolydorides, N. "A stochastic simulation method for uncertainty quantification in the linearized inverse conductivity problem." International Journal for Numerical Methods in Engineering 90, no. 1 (2011): 22–39. http://dx.doi.org/10.1002/nme.3305.
Full textTinfena, G., M. Angelucci, L. Sargentini, S. Paci, and L. E. Herranz. "Inverse uncertainty Quantification in the Severe accident Domain: Application to Fission Product release." Nuclear Engineering and Design 436 (May 2025): 113954. https://doi.org/10.1016/j.nucengdes.2025.113954.
Full textFan, Ming, Zezhong Zhang, Dan Lu, and Guannan Zhang. "GenAI4UQ: A software for forward and inverse uncertainty quantification using conditional generative AI." SoftwareX 31 (September 2025): 102232. https://doi.org/10.1016/j.softx.2025.102232.
Full text