To see the other types of publications on this topic, follow the link: Inversion de phase transitionnel.

Journal articles on the topic 'Inversion de phase transitionnel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Inversion de phase transitionnel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sajjadi, Shahriar, Fatemeh Jahanzad, and Michael Yianneskis. "Catastrophic phase inversion of abnormal emulsions in the vicinity of the locus of transitional inversion." Colloids and Surfaces A: Physicochemical and Engineering Aspects 240, no. 1-3 (2004): 149–55. http://dx.doi.org/10.1016/j.colsurfa.2004.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Binks, B. P., and S. O. Lumsdon. "Transitional Phase Inversion of Solid-Stabilized Emulsions Using Particle Mixtures." Langmuir 16, no. 8 (2000): 3748–56. http://dx.doi.org/10.1021/la991427q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jahanzad, Fatemeh, Gini Chauhan, Sherif Mustafa, Basu Saha, Shahriar Sajjadi, and Brian W. Brooks. "Composite Polymer Nanoparticles via Transitional Phase Inversion Emulsification and Polymerisation." Macromolecular Symposia 259, no. 1 (2007): 145–50. http://dx.doi.org/10.1002/masy.200751317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jahanzad, Fatemeh, Basu Saha, Shahriar Sajjadi, and Brian W. Brooks. "Preparation of Polymerizable Hybrid Miniemulsions by Transitional Phase Inversion Emulsification." Macromolecules 40, no. 12 (2007): 4182–89. http://dx.doi.org/10.1021/ma062872c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Charin, R. M., B. C. Araújo, A. C. Farias, F. W. Tavares, and M. Nele. "Studies on transitional emulsion phase inversion using the steady state protocol." Colloids and Surfaces A: Physicochemical and Engineering Aspects 484 (November 2015): 424–33. http://dx.doi.org/10.1016/j.colsurfa.2015.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jahanzad, Fatemeh, Dimitris Josephides, Ali Mansourian, and Shahriar Sajjadi. "Dynamics of Transitional Phase Inversion Emulsification: Effect of Addition Time on the Type of Inversion and Drop Size." Industrial & Engineering Chemistry Research 49, no. 16 (2010): 7631–37. http://dx.doi.org/10.1021/ie901577f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Charin, R. M., M. Nele, and F. W. Tavares. "Transitional Phase Inversion of Emulsions Monitored by in Situ Near-Infrared Spectroscopy." Langmuir 29, no. 20 (2013): 5995–6003. http://dx.doi.org/10.1021/la4007263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pizzino, Aldo, Marianne Catté, Elisabeth Van Hecke, Jean-Louis Salager, and Jean-Marie Aubry. "On-line light backscattering tracking of the transitional phase inversion of emulsions." Colloids and Surfaces A: Physicochemical and Engineering Aspects 338, no. 1-3 (2009): 148–54. http://dx.doi.org/10.1016/j.colsurfa.2008.05.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brooks, Brian W., and Howard N. Richmond. "Phase inversion in non-ionic surfactant—oil—water systems—I. The effect of transitional inversion on emulsion drop sizes." Chemical Engineering Science 49, no. 7 (1994): 1053–64. http://dx.doi.org/10.1016/0009-2509(94)80011-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brooks, Brian W., and Howard N. Richmond. "The Application of a Mixed Nonionic Surfactant Theory to Transitional Emulsion Phase Inversion." Journal of Colloid and Interface Science 162, no. 1 (1994): 59–66. http://dx.doi.org/10.1006/jcis.1994.1008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Brooks, Brian W., and Howard N. Richmond. "The Application of a Mixed Nonionic Surfactant Theory to Transitional Emulsion Phase Inversion." Journal of Colloid and Interface Science 162, no. 1 (1994): 67–74. http://dx.doi.org/10.1006/jcis.1994.1009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Binks, Bernard P., and Andrew T. Tyowua. "Oil-in-oil emulsions stabilised solely by solid particles." Soft Matter 12, no. 3 (2016): 876–87. http://dx.doi.org/10.1039/c5sm02438b.

Full text
Abstract:
Relatively hydrophobic particles of different type, size and shape are shown to be effective stabilisers of emulsions containing immiscible oils of low dielectric constant. Transitional and catastrophic phase inversion can be effected and both simple and multiple emulsions are stable for a long period of time.
APA, Harvard, Vancouver, ISO, and other styles
13

Read, E. S., S. Fujii, J. I. Amalvy, D. P. Randall, and S. P. Armes. "Effect of Varying the Oil Phase on the Behavior of pH-Responsive Latex-Based Emulsifiers: Demulsification versus Transitional Phase Inversion." Langmuir 20, no. 18 (2004): 7422–29. http://dx.doi.org/10.1021/la049431b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Read, E. S., S. Fujii, J. I. Amalvy, D. P. Randall, and S. P. Armes. "Effect of Varying the Oil Phase on the Behavior of pH-Responsive Latex-Based Emulsifiers: Demulsification versus Transitional Phase Inversion." Langmuir 21, no. 4 (2005): 1662. http://dx.doi.org/10.1021/la047603z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pierlot, Christel, Mélanie Menuge, Marianne Catté, Olivier Devos, and Jesús F. Ontiveros. "Visible Light Backscattering Monitored in Situ for Transitional Phase Inversion of BrijL4–Isopropyl Myristate–Water Emulsions." Industrial & Engineering Chemistry Research 58, no. 44 (2019): 20195–202. http://dx.doi.org/10.1021/acs.iecr.9b04062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Xiaolong, Yonghong Liu, Hang Dong, Qiang Sun, Yang Shen, and Renjie Ji. "A Three-Step Model for Submicron W/O Emulsion Formation in a Transitional-Phase Inversion Process." Journal of Dispersion Science and Technology 37, no. 8 (2015): 1186–91. http://dx.doi.org/10.1080/01932691.2015.1088453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Anisa, A. N. Ilia, Abdurahman H. Nour, and Azhary H. Nour. "Catastrophic and Transitional Phase Inversion of Water-in-Oil Emulsion for Heavy and Light Crude Oil." Journal of Applied Sciences 10, no. 23 (2010): 3076–83. http://dx.doi.org/10.3923/jas.2010.3076.3083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pierlot, Christel, Jesus F. Ontiveros, Marianne Catté, Jean-Louis Salager, and Jean-Marie Aubry. "Cone–Plate Rheometer as Reactor and Viscosity Probe for the Detection of Transitional Phase Inversion of Brij30–Isopropyl Myristate–Water Model Emulsion." Industrial & Engineering Chemistry Research 55, no. 14 (2016): 3990–99. http://dx.doi.org/10.1021/acs.iecr.6b00399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lian, Peiqing, Taizhong Duan, Rui Xu, Linlin Li, and Meng Li. "Pressure behavior of shale-gas flow in dual porous medium based on fractal theory." Interpretation 6, no. 4 (2018): SN1—SN10. http://dx.doi.org/10.1190/int-2018-0002.1.

Full text
Abstract:
The shale gas reservoir is a complex subject with a multiscale nanopore and fracture system, and the gas flow mechanism indicates an evident difference from the conventional gas reservoir. We have introduced fractal theory to characterize the multiscale distribution of pores and fractures, and we have developed a single-phase radial flow model considering nonequilibrium adsorption to describe the flow characteristics in the shale gas reservoir. The numerical solution of the flow model in Euclidean space is obtained by inversing the analytical solution derived in Laplace space through the Stehf
APA, Harvard, Vancouver, ISO, and other styles
20

Xu, Jiao, Chengli Liu, and Xiong Xiong. "Source Process of the 24 January 2020 Mw 6.7 East Anatolian Fault Zone, Turkey, Earthquake." Seismological Research Letters 91, no. 6 (2020): 3120–28. http://dx.doi.org/10.1785/0220200124.

Full text
Abstract:
Abstract The 24 January 2020 Mw 6.7 earthquake in eastern Turkey was due to the reactivation of the strike-slip faulting between the Arabian and Anatolian plates. To gain insight into the source regime and its relationship with historical earthquakes, we determined the coseismic slip distribution of this event by joint analyses of Interferometric Synthetic Aperture Radar and teleseismic observations. Inversion results indicate that the main rupture asperity occurred in the southwest of the epicenter with a maximum slip of ∼1.9 m, showing a bilateral source process with an average rupture veloc
APA, Harvard, Vancouver, ISO, and other styles
21

van Driel, Robert, and Harm J. J. Jonker. "Convective Boundary Layers Driven by Nonstationary Surface Heat Fluxes." Journal of the Atmospheric Sciences 68, no. 4 (2011): 727–38. http://dx.doi.org/10.1175/2010jas3643.1.

Full text
Abstract:
In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with different frequencies and amplitudes and study the response of the boundary layer in terms of transfer functions. To this end both a mixed layer model (MLM) and a l
APA, Harvard, Vancouver, ISO, and other styles
22

Guo, Xin, Shunchang Li, Fuhua Chen, et al. "Performance Improvement of PVDF–HFP-Based Gel Polymer Electrolyte with the Dopant of Octavinyl-Polyhedral Oligomeric Silsesquioxane." Materials 14, no. 11 (2021): 2701. http://dx.doi.org/10.3390/ma14112701.

Full text
Abstract:
Gel polymer electrolytes have the advantages of both a solid electrolyte and a liquid electrolyte. As a transitional product before which a solid electrolyte can be comprehensively used, gel polymer electrolytes are of great research value. They can reduce the risk of spontaneous combustion and explosion caused by leakage during the use of conventional liquid electrolytes. Poly(vinylidene-fluoride-co-hexafluoropropylene) (PVDF–HFP), a material with excellent performance, has been widely utilized in the preparation of gel polymer electrolytes. Here, PVDF–HFP-based gel polymer membranes with pol
APA, Harvard, Vancouver, ISO, and other styles
23

Weiss, Jindřich. "Phase Inversion in Two-Phase Liquid Systems." Collection of Czechoslovak Chemical Communications 57, no. 7 (1992): 1419–23. http://dx.doi.org/10.1135/cccc19921419.

Full text
Abstract:
New data on critical holdups of dispersed phase were measured at which the phase inversion took place. The systems studied differed in the ratio of phase viscosities and interfacial tension. A weak dependence was found of critical holdups on the impeller revolutions and on the material contactor; on the contrary, a considerable effect of viscosity was found out as far as the viscosity of continuous phase exceeded that of dispersed phase.
APA, Harvard, Vancouver, ISO, and other styles
24

Yeo, L. Y., Omar K. Matar, E. S. Perez de Ortiz, and Geoffrey F. Hewitt. "PHASE INVERSION AND ASSOCIATED PHENOMENA." Multiphase Science and Technology 12, no. 1 (2000): 66. http://dx.doi.org/10.1615/multscientechn.v12.i1.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bodzek, Michal, and Jolanta Bohdziewicz. "Porous polycarbonate phase-inversion membranes." Journal of Membrane Science 60, no. 1 (1991): 25–40. http://dx.doi.org/10.1016/s0376-7388(00)80322-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kinzer, Kevin E., Douglas R. Lloyd, M. S. Gay, J. P. Wightman, B. C. Johnson, and J. E. McGrath. "Phase inversion sulfonated polysulfone membranes." Journal of Membrane Science 22, no. 1 (1985): 1–29. http://dx.doi.org/10.1016/s0376-7388(00)80528-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Campbell, Scott B., Todd Larson, Niels M. B. Smeets, Ula El-Jaby, and Timothy F. L. McKenna. "Miniemulsification by catastrophic phase inversion." Chemical Engineering Journal 183 (February 2012): 534–41. http://dx.doi.org/10.1016/j.cej.2011.12.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Young, Tai-Horng, Da-Ming Wang, Chih-Chen Hsieh, and Leo-Wang Chen. "The effect of the second phase inversion on microstructures in phase inversion EVAL membranes." Journal of Membrane Science 146, no. 2 (1998): 169–78. http://dx.doi.org/10.1016/s0376-7388(98)00106-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lee, Da-Kong, Hong-Bing Tsai, and J. L. Standford. "Phase separation and phase inversion of polyurethane networks." Journal of Polymer Research 3, no. 3 (1996): 159–63. http://dx.doi.org/10.1007/bf01494525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sajjadi, Shahriar. "Nanoemulsion Formation by Phase Inversion Emulsification: On the Nature of Inversion." Langmuir 22, no. 13 (2006): 5597–603. http://dx.doi.org/10.1021/la060043e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rosenthal, Stanton J., Paul H. Jones, and Louis H. Wetzel. "Phase Inversion Tissue Harmonic Sonographic Imaging." American Journal of Roentgenology 176, no. 6 (2001): 1393–98. http://dx.doi.org/10.2214/ajr.176.6.1761393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kumar, Ankit, Shigeng Li, Chieh-Min Cheng, and Daeyeon Lee. "Recent Developments in Phase Inversion Emulsification." Industrial & Engineering Chemistry Research 54, no. 34 (2015): 8375–96. http://dx.doi.org/10.1021/acs.iecr.5b01122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

YAMANAKA, Hiroaki, and Hiroshi ISHIDA. "PHASE VELOCITY INVERSION USING GENETIC ALGORITHMS." Journal of Structural and Construction Engineering (Transactions of AIJ) 60, no. 468 (1995): 9–17. http://dx.doi.org/10.3130/aijs.60.9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

McLaughlin, Glen, and Ting-Lan Ji. "System for phase inversion ultrasonic imaging." Journal of the Acoustical Society of America 118, no. 2 (2005): 600. http://dx.doi.org/10.1121/1.2040299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Friberg, Stig E., Robert W. Corkery, and Irena A. Blute. "Phase Inversion Temperature (PIT) Emulsification Process." Journal of Chemical & Engineering Data 56, no. 12 (2011): 4282–90. http://dx.doi.org/10.1021/je101179s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fu, Lei, Bowen Guo, and Gerard T. Schuster. "Multiscale phase inversion of seismic data." GEOPHYSICS 83, no. 2 (2018): R159—R171. http://dx.doi.org/10.1190/geo2017-0353.1.

Full text
Abstract:
We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive than full-waveform inversion (FWI) to the unmodeled physics of wave propagation and to a poor starting model. To avoid cycle skipping, the multiscale strategy temporally integrates the traces several times, i.e., high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, lower frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into dif
APA, Harvard, Vancouver, ISO, and other styles
37

McLaughlin, Glen, and Ting-Lan Ji. "System for phase inversion ultrasonic imaging." Journal of the Acoustical Society of America 128, no. 4 (2010): 2261. http://dx.doi.org/10.1121/1.3500795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zak, J. "Inversion operators in finite phase plane." Journal of Mathematical Physics 53, no. 10 (2012): 103514. http://dx.doi.org/10.1063/1.4752731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mchugh, A. J., and C. S. Tsay. "Dynamics of the phase inversion process." Journal of Applied Polymer Science 46, no. 11 (1992): 2011–21. http://dx.doi.org/10.1002/app.1992.070461113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aghamiry, H. S., A. Gholami, and S. Operto. "Robust wavefield inversion via phase retrieval." Geophysical Journal International 221, no. 2 (2020): 1327–40. http://dx.doi.org/10.1093/gji/ggaa035.

Full text
Abstract:
SUMMARY Extended formulation of full waveform inversion (FWI), called wavefield reconstruction inversion (WRI), offers potential benefits of decreasing the non-linearity of the inverse problem by replacing the explicit inverse of the wave-equation operator of classical FWI (the oscillating Green functions) with a suitably defined data-driven regularized inverse. This regularization relaxes the wave-equation constraint to reconstruct wavefields that match the data, hence mitigating the risk of cycle skipping. The subsurface model parameters are then updated in a direction that reduces these con
APA, Harvard, Vancouver, ISO, and other styles
41

Solov'eva, A. E. "Phase inversion in polycrystalline scandium oxide." Refractories 30, no. 5-6 (1989): 357–60. http://dx.doi.org/10.1007/bf01281509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kumar, Hemant, Venkateshwar Rao Dugyala, and Madivala G. Basavaraj. "Phase Inversion of Ellipsoid-Stabilized Emulsions." Langmuir 37, no. 24 (2021): 7295–304. http://dx.doi.org/10.1021/acs.langmuir.1c00456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Brauner, Neima, and Amos Ullmann. "Modeling of phase inversion phenomenon in two-phase pipe flows." International Journal of Multiphase Flow 28, no. 7 (2002): 1177–204. http://dx.doi.org/10.1016/s0301-9322(02)00017-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Edwards, Laura, Keeran Ward, and Dhurjati Prasad Chakrabarti. "Phase inversion in liquid phase for air-liquid horizontal flow." Cogent Engineering 7, no. 1 (2020): 1782622. http://dx.doi.org/10.1080/23311916.2020.1782622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

RunMing, Li, Yu Wei, and Zhou ChiXing. "Phase inversion and viscoelastic properties of phase-separated polymer blends." Polymer Bulletin 59, no. 4 (2007): 545–54. http://dx.doi.org/10.1007/s00289-007-0794-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kawakami, Hiroyoshi. "Membrane Structure Controlled by Phase Inversion Process." membrane 26, no. 3 (2001): 110–15. http://dx.doi.org/10.5360/membrane.26.110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Doki, Kakushi, and Nagao Totani. "A Study on Phase Inversion Temperature Emulsification." Journal of Society of Cosmetic Chemists of Japan 32, no. 1 (1997): 17–25. http://dx.doi.org/10.5107/sccj.32.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Guilinger, Terry R., Arne K. Grislingas, and Olav Erga. "Phase inversion behavior of water-kerosine dispersions." Industrial & Engineering Chemistry Research 27, no. 6 (1988): 978–82. http://dx.doi.org/10.1021/ie00078a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ruckenstein, Eli. "Phase Inversion Temperatures of Macro- and Microemulsions." Langmuir 13, no. 9 (1997): 2494–97. http://dx.doi.org/10.1021/la9620364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hölscher, Thilo, Burak Ozgur, Soren Singel, Wilko G. Wilkening, Robert F. Mattrey, and Hoi Sang. "INTRAOPERATIVE ULTRASOUND USING PHASE INVERSION HARMONIC IMAGING." Operative Neurosurgery 60 (April 2007): 382–87. http://dx.doi.org/10.1227/01.neu.0000255379.87840.6e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!