Academic literature on the topic 'Inverted pendulum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inverted pendulum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Inverted pendulum"

1

Mesa, F., R. Ospina Ospina, and D. M. Devia-Narvaez. "Methodology of robust inverted pendulum controllers on a vehicle." Journal of Physics: Conference Series 2102, no. 1 (November 1, 2021): 012012. http://dx.doi.org/10.1088/1742-6596/2102/1/012012.

Full text
Abstract:
Abstract In the theory of controllers, the simple and inverted pendulum play an important role due to the equations that result from them, which imply non-linearities and perturbations, thus, in this article, a brief classification of inverted pendulums is presented: inverted pendulum, inverted double pendulum, inverted rotary pendulum (Furuta pendulum). Subsequently, a mathematical model of the inverted pendulum is described through the deduction of the equations of motion that represent the dynamics of the system. Robust control is presented that allows expanding the richness of the mathematical equations, for this case, a control with output feedback is presented and applied to the inverted pendulum to control the unstable dynamics of this model. The results are compared with a post placement control and a robust control using a norm that analyses the characteristics of the system.
APA, Harvard, Vancouver, ISO, and other styles
2

Nasim, Shahzad, M. Javeed, M. Shafiq, Faraz Liaquat, and Zain Anwar Ali. "Self-Erected Inverted Pendulum." Advanced Materials Research 816-817 (September 2013): 415–19. http://dx.doi.org/10.4028/www.scientific.net/amr.816-817.415.

Full text
Abstract:
The basic theme of this research paper is self-erecting the inverted pendulum by via ARDUINO controller and stabilizes the system through PID algorithm of linear control system. ARDUINO controller acquires the data from the sensors in terms of position and angle of the pendulum and commands the motor through PWM signal after that swing the pendulum from rest position to get and balance the inverted position. Controller read the pendulums angular position through potentiometer then calculates and removes errors via PID algorithm. MATLAB-Simulink and LABVIEW sent and receives runtime information from controller.
APA, Harvard, Vancouver, ISO, and other styles
3

Fahmizal, Geonoky, and Hari Maghfiroh. "Rotary Inverted Pendulum Control with Pole Placement." Journal of Fuzzy Systems and Control 1, no. 3 (December 27, 2023): 90–96. http://dx.doi.org/10.59247/jfsc.v1i3.152.

Full text
Abstract:
The inverted pendulums are multivariable and highly unstable dynamic systems. The inverted pendulum has been used to answer many modern control and control system designs because it has several problems relating to the system model of nonlinearity, difficulty, and inactivity. In this research, the main topic is the rotatory inverted pendulum. Circular path to eliminate the path that is on the pendulum that is traversed by the transversal path. In this paper, the Inverted Rotatory Pendulum is analyzed by state feedback which is adjusted by pole placement. The result of design selection in the system is very important to pay attention to the area where the pendulum will reach the point of agreement.
APA, Harvard, Vancouver, ISO, and other styles
4

PAGANO, DANIEL, LUIS PIZARRO, and JAVIER ARACIL. "LOCAL BIFURCATION ANALYSIS IN THE FURUTA PENDULUM VIA NORMAL FORMS." International Journal of Bifurcation and Chaos 10, no. 05 (May 2000): 981–95. http://dx.doi.org/10.1142/s0218127400000700.

Full text
Abstract:
Inverted pendulums are very suitable to illustrate many ideas in automatic control of nonlinear systems. The rotational inverted pendulum is a novel design that has some interesting dynamics features that are not present in inverted pendulums with linear motion of the pivot. In this paper the dynamics of a rotational inverted pendulum has been studied applying well-known results of bifurcation theory. Two classes of local bifurcations are analyzed by means of the center manifold theorem and the normal form theory — first, a pitchfork bifurcation that appears for the open-loop controlled system; second, a Hopf bifurcation, and its possible degeneracies, of the equilibrium point at the upright pendulum position, that is present for the controlled closed-loop system. Some numerical results are also presented in order to verify the validity of our analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Yujue, Weining Mao, Qing Wang, and Bin Xin. "Fuzzy Cooperative Control for the Stabilization of the Rotating Inverted Pendulum System." Journal of Advanced Computational Intelligence and Intelligent Informatics 27, no. 3 (May 20, 2023): 360–71. http://dx.doi.org/10.20965/jaciii.2023.p0360.

Full text
Abstract:
The rotating inverted pendulum is a nonlinear, multivariate, strongly coupled unstable system, and studying it can effectively reflect many typical control problems. In this paper, a parameter self-tuning fuzzy controller is proposed to perform the balance control of a single rotating inverted pendulum. Particle swarm optimization is used to adjust its control parameters, and simulation experiments are performed to show that the system can achieve stability with the designed parametric self-tuning fuzzy controller, with control performance better than that of the conventional fuzzy controller. Furthermore, the leader-follower control strategy is used to realize the cooperative control of multiple rotating inverted pendulums. Two QUBE-Servo 2 rotating inverted pendulums are used for a cooperative pendulum swing-up experiment and stabilization experiment, and the effectiveness of the proposed cooperative control strategy is verified.
APA, Harvard, Vancouver, ISO, and other styles
6

Sultan, Ghassan A., and Ziyad K. Farej. "Design and Performance Analysis of LQR Controller for Stabilizing Double Inverted Pendulum System." Circulation in Computer Science 2, no. 9 (October 20, 2017): 1–5. http://dx.doi.org/10.22632/ccs-2017-252-45.

Full text
Abstract:
Double inverted pendulum (DIP) is a nonlinear, multivariable and unstable system. The inverted pendulum which continually moves toward an uncontrolled state represents a challenging control problem. The problem is to balance the pendulum vertically upward on a mobile platform that can move in only two directions (left or right) when it is offset from zero stat. The aim is to determine the control strategy that deliver better performance with respect to pendulum's angles and cart's position. A Linear-Quadratic-Regulator (LQR) technique for controlling the linearized system of double inverted pendulum model is presented. Simulation studies conducted in MATLAB environment show that the LQR controller are capable of controlling the multi output double inverted pendulum system. Also better performance results are obtained for controlling heavy driven part DIP system.
APA, Harvard, Vancouver, ISO, and other styles
7

Pippard, A. B. "The inverted pendulum." European Journal of Physics 8, no. 3 (July 1, 1987): 203–6. http://dx.doi.org/10.1088/0143-0807/8/3/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luca, Roberto De, Marco Di Mauro, and Adele Naddeo. "The inverted pendulum." European Journal of Physics 39, no. 5 (August 3, 2018): 055008. http://dx.doi.org/10.1088/1361-6404/aad3d6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yi, Jianqiang, Naoyoshi Yubazaki, and Kaoru Hirota. "A New Fuzzy Controller for Stabilizing Inverted Pendulums Based on Single Input Rule Modules Dynamically Connected Fuzzy Inference Model." Journal of Advanced Computational Intelligence and Intelligent Informatics 5, no. 1 (January 20, 2001): 58–70. http://dx.doi.org/10.20965/jaciii.2001.p0058.

Full text
Abstract:
A fuzzy controller is presented based on the Single Input Rule Modules (SIRMs) dynamically connected fuzzy inference model for stabilization control of inverted pendulums. The angle and angular velocity of the pendulum and the position and velocity of the cart are selected as input items and the driving force as the output item. By using SIRMs and dynamic importance degrees, the fuzzy controller realizes angular control of the pendulum and position control of the cart in parallel with totally only 24 fuzzy rules. Switching between angular control of the pendulum and position control of the cart is smoothly performed by automatically adjusting dynamic importance degrees according to control situations. For any inverted pendulums, of which the pendulum length is among [0.5m, 2.2m], simulation results show that the proposed fuzzy controller has a high generalization ability to stabilize the pendulum systems completely in about 6.0 seconds when the initial angle of the pendulum is among [-30.0°, +30.0°], or the initial position of the cart is among [-2.1m, +2.1m].
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Hong Qi. "Dynamics Modeling of the Planar Double Inverted Pendulum." Applied Mechanics and Materials 195-196 (August 2012): 17–22. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.17.

Full text
Abstract:
planar double inverted pendulum is a strong coupling, uncertain and complex nonlinear system, and the dynamics model of which is the basis of control, simulation and analysis. In the paper coordinate systems of the planar double inverted pendulum were first defined, and then the dynamics model of which was built up based on screw theory and the Lagrange principle. The modeling method used being systematic and standardized, it is easy to extend to dynamics modeling of higher order planar inverted pendulums or other multi-body systems.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Inverted pendulum"

1

Li, Bo. "Rotational Double Inverted Pendulum." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375188910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Houchin, Scott J. "Pendulum : controlling an inverted pendulum using fuzzy logic /." Online version of thesis, 1991. http://hdl.handle.net/1850/11294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lundberg, Kent Howard. "Linear dual inverted pendulum control." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stenbeck, Filip, and Aron Nygren. "Controller Analysis with Inverted Pendulum." Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184515.

Full text
Abstract:
The aim of this thesis is to examine if feedback of the angle from an inverted pendulum is sufficient to control its angle at an unstable equilibrium with statics and force impulses, and through different approaches and choice of controller find the most suitable one for these types of applications. The controllers that were tested was, the PID regulator and the state space regulator. The results would show that the mathematical approach to find a controller is difficult and time consuming, and it is often better to use a trial and error approach to find a regulator if repeated test on the system is possible. The core of the thesis lies in the mathematical approximations of the mechanical and electrical system, the analysis of the controller and the choice and usage of components. Analysis of the combined electrical and mechanical systems were made in Simulink and Matlab and was then generated to mechanical code to an micro controller controlling the voltage to a dc-motor. The system is non linear but can be linearised around the equilibrium point that we want to maintain, which is a good approximation for small angles. This thesis describes the electrical and mechanical components used to build a rotary inverted pendulum and how to produce an effective controller in detail.
Målet med examensarbetet är att utvärdera om återkoppling av vinkeln frånen inverterad pendel är tillräcklig för att kontrollera denna kring en instabil jämviktspunkt med störningar samt pålagda kraftimpulser, och genom val av olika tillvägagångssätt och regulatorer finna den mest lämpliga för dessa typer av tillämpningar. De regulatorer som användes i projektet var PID-regulatorn samt state space regulatorn. Resultaten kom att visa att ett matematisk tillvägagångsätt att skapa en regulator är svårt och tidskrävande, och det är ofta mer effektivt att testa sig fram till en regulator om systemet tillåter. Kärnan i arbetet ligger i de matematiska approximationerna av de mekaniska och elektriska system, analysen av kontrollern och valet samt tillämpningen av komponenter. Analysen av det kombinerade elektriska och mekaniska systemen gjordes i Simulink och Matlab och var därefter genererad till mekanisk kod till en mikro-kontroller för att regulera spänningen till en likströmsmotor. Den inverterade pendeln är ett olinjärt system men kan med god approximation och litet fel linjariseras runt dess instabila jämnviktspunkt. Detta examensarbete kommer i huvudsak handla om hur man konstruerar en regulator genom simulering samt analys av systemet. Alla komponenter såväl elektriska som mekaniska kommer att beskrivas i detalj.
APA, Harvard, Vancouver, ISO, and other styles
5

Lei, Kam Kin. "Fuzzy control on double inverted pendulum." Thesis, University of Macau, 2005. http://umaclib3.umac.mo/record=b1445842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cox, Bruce. "Feedback Stabilization of Inverted Pendulum Models." VCU Scholars Compass, 2005. http://scholarscompass.vcu.edu/etd/1174.

Full text
Abstract:
Many mechanical systems exhibit nonlinear movement and are subject to perturbations from a desired equilibrium state. These perturbations can greatly reduce the efficiency of the systems. It is therefore desirous to analyze the asymptotic stabilizability of an equilibrium solution of nonlinear systems; an excellent method of performing these analyses is through study of Jacobian linearization's and their properties. Two enlightening examples of nonlinear mechanical systems are the Simple Inverted Pendulum and the Inverted Pendulum on a Cart (PoC). These examples provide insight into both the feasibility and usability of Jacobian linearizations of nonlinear systems, as well as demonstrate the concepts of local stability, observability, controllability and detectability of linearized systems under varying parameters. Some examples of constant disturbances and effects are considered. The ultimate goal is to examine stabilizability, through both static and dynamic feedback controllers, of mechanical systems
APA, Harvard, Vancouver, ISO, and other styles
7

Abdul, Halim Mohd Fauzul Rizal. "Single inverted pendulum with novel hardware." Thesis, Abdul Halim, Mohd Fauzul Rizal (2018) Single inverted pendulum with novel hardware. Honours thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/41058/.

Full text
Abstract:
The purpose of this project is to stabilize an inverted pendulum from its rest position using a feedback control. The single inverted pendulum (SIP) is a classical nonlinear system. SIP used in this thesis consists of a pole attached to the cart and driven by a DC motor which is supplied via a motor driver. The position of the pendulum is measured by an encoder that is positioned behind the pendulum cart. SIP used in this project were controlled by a single microprocessor and programmed using a LabVIEW. The microprocessor will process the pendulum’s position, and a controller designed in LabVIEW will react according to the position of the pendulum. Statechart design and State Machine Design are two methods used in this project to combine the swing up routine and stabilizing routine. The on-off controller is used inside the swing up routine while in stabilizing mode, four types of controller has been tested which is P, PI, PD and PID controller. The main objective of this project is to balance the pendulum at its upright position from its stable position. Another objective of this thesis is to integrate the software and hardware of the system. Overall, this project can be considered success, and most of the objective has been achieved even though the pendulum can only be stabilized about a few second it still consider a great achievement consider that the pendulum needs to be stabilized from its rest position.
APA, Harvard, Vancouver, ISO, and other styles
8

Ni, Jie. "Control of the spatial double inverted pendulum." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104855.

Full text
Abstract:
The stabilization of a hip-actuated spatial double inverted pendulum can be considered as a problem of postural control of a humanoid robot. Based on an existing model of this underactuated mechanical system with four degrees of freedom, the ultimate objective is to design a suitable controller to achieve global stabilization around the unstable upright equilibrium position. This thesis presents a number of control algorithms and simulation results that provide either local stabilization or semi-global swing-up. For the effort of local stabilization in the vicinity of the upright equilibrium position, both an lqr controller and three types of linearization-based sliding mode control algorithms are presented. The region of convergence of the lqr controller is investigated. System performance and robustness against disturbances are compared for all controllers.In order to realize semi-global swing-up, two types of nonlinear sliding mode control approaches are explored for the swing up of the system in an attempt to bring the system into the region of convergence of the local linear controllers. The hybrid approach is proposed to switch from the swing-up controller to a local linear controller under certain conditions in the vicinity of the upright equilibrium to complete the stabilization effort. However, despite extensive tuning of the controllers, it has not been possible to achieve global stabilization with such an approach. Further investigation is needed in order to resolve this issue. The main contribution of this thesis is a successful extension of existing 2-dimensional sliding mode control algorithms into 3-D for the control of the spatial double inverted pendulum. The linearization-based sliding mode controllers serve as alternatives to lqr for local stabilization. The nonlinear sliding mode controllers are able bring the system from a configuration far from the upright equilibrium to the vicinity of the unstable upright equilibrium in semi-global swing-up.
La stabilisation d'un double pendule spatiale inversé actionné à la hanche peut-être considérée comme un problème de contrôle de la posture d'un robot humanoïde. Basé sur un modèle existant de ce système mécanique sous-actionné avec quatre degrés de liberté, l'ultime objectif est de concevoir un régulateur approprié pour obtenir une stabilisation globale autour de l'instable position d'équilibre debout. Cette thèse présente un certain nombre d'algorithmes de contrôle et les résultats de simulation qui permettent une stabilisation locale ou semi-globale pivoter-vers-le-haut. Pour l'effort de stabilisation locale dans le voisinage de la position d'équilibre en position verticale, à la fois un contrôleur lqr et trois types de linéarisation basée sur des algorithmes de contrôle de mode glissant sont présentés. La région de la convergence du contrôleur lqr est étudiée. La performance et la robustesse du système sont comparées pour tous les contrôleurs. Afin de réaliser la strateǵie semi-globale pivoter-vers-le-haut, deux types d'approches de commande non linéaire de mode glissant sont explorés pour le balancement du système dans un essai pour amener le système dans la région de convergence locale des contrôleurs linéaires. L'approche hybride est proposée pour passer du contrôleur pour pivoter-vers-le-haut à un contrôleur linéaire local sous certaines conditions dans le voisinage de l'équilibre en position verticale afin de compléter l'effort de stabilisation. Toutefois, malgré des ajustements des contrôleurs, il n'a pas été possible de parvenir à une stabilisation globale avec une telle approche. Une enquête plus profonde est nécessaire pour résoudre ce problème. La contribution principale de cette thèse est la réussite une d'extension d'algorithmes de commande de 2-dimensions de mode glissant qui existent pour le cas de 3-D pour le contrôle du double pendule inversé spatial. Les contrôleurs de mode glissant basés sur un modèle du système linéarisé servent comme alternatives au contrôleur lqr pour la stabilisation locale. Les contrôleurs de mode glissant non-linéaires sont capables, à partir d'une configuration loin de l'équilibre de mettre le système dans la proximité de l'équilibre debout vertical utilisant le principe semi-global pivoter-vers-le-haut.
APA, Harvard, Vancouver, ISO, and other styles
9

Xinjilefu, Xinjilefu. "Stabilization of the spatial double inverted pendulum." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95109.

Full text
Abstract:
The stabilization of a double inverted pendulum moving in a three dimensional space may be considered to be a model of a human - and of other animals - postural control. In this thesis, we focus on modelling the spatial double inverted pendulum, and applying different control strategies to stabilize it. In modelling, we introduce three algorithms: the Natural Orthogonal Complement, the Composite Rigid Body Algorithm, and the Articulated Body Algorithm, all in the framework of Plucker coordinates. The main contribution of this thesis is we show that postural control is possible by minimization of the system Lagrangian. An stochastic programming procedure proves to be able to find oscillatory inputs that bring the system close to the unstable upright equilibrium position. In conclusion, our study demonstrates that steering complex mechanical systems may in certain cases be actually be simpler than expected.
La stabilisation d'un double pendule inversé se déplaçant dans un espace à trois dimensions peut être considéré comme un modèle de la posture humaine ou animale. Dans cette thèse, nous nous concentrons sur la modélisation du pendule et sur l'application de différentes stratégies de contrôle pour le stabiliser. Dans la modélisation, nous introduisons trois algorithmes : le Complément Orthogonal Naturel, l'Algorithme du Corps Rigide Composé et l'Algorithme du Corps Articulé. Tous utilisent les coordonnées pluckeriennes. La principale contribution de cette thèse vient de la démonstration que le contrôle de la posture est possible par la minimisation du Lagrangien du sytème. Une procédure de programmation stochastique est capable de trouver la stimulation oscillatoire en entrée qui ammène le système près de la position droite en équilibre instable. En conclusion, notre étude démontre que la direction de systèmes mécaniques complexes peut, dans certains cas, s'avérer plus simple que l'on pourrait s'y attendre.
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmad, Saad. "Spatial vector modeling of the double inverted pendulum." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116962.

Full text
Abstract:
A model of human and animal posture control was introduced in a three dimensional space represented by 'spherical double inverted pendulum'. In this thesis, we are going to model the spatial double inverted pendulum using the spatial vector approach and we will try to balance this double inverted pendulum with a large region of attraction by an ad hoc controller presentedin this thesis. The spatial vector model is in the form of a general kinematic tree in which the joints are revolute, prismatic or helical and the forward dynamics of this model is described by the Composite Rigid Body Algorithm which is introduced with respect to the spatial vector coordinates.The main objective of this thesis is to explain the possibility of postural control by presenting a spatial vector model of the system. After all the research, it was found out that this modeling technique can be used to find oscillatory inputs that bring the system close to the unstable upright equilibrium position with an ad hoc controller.
Un modèle de contrôle de posture humaine et animale fut introduit dans un espace tridimensionnel représenté par une «pendule sphérique double inversée». Dans cette thèse, nous allons modéliser la pendule double inversée spatiale en utilisant l'approche de vecteur spatial et nous tenterons d'équilibrer cette pendule double inversée avec une grande zone d'attraction à l'aide d'un contrôleur spécifique présenté dans cette thèse. Le modèle de vecteur spatial est sous forme d'un arbre général cinématique/de motion dans lequel les articulations sont rotatives, prismatiques ou hélicoïdales, et les dynamiques d'avancement de ce modèle sont décrites par l'Algorithme de corps rigide composite étant introduit en rapport aux coordonnées spatiales vectorielles.L'objectif principal de cette thèse est d'expliquer la possibilité du contrôle postural en présentant un modèle vectoriel spatial du système. Suite aux études et recherches, il fut constaté que cette technique de modélisation peut être utilisée pour identifier des données d'entrées oscillatoires qui amènent le système proche à une position d'équilibre debout instable à l'aide d'un contrôleur spécifique.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Inverted pendulum"

1

Li, Zhijun, Chenguang Yang, and Liping Fan. Advanced Control of Wheeled Inverted Pendulum Systems. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-2963-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Zhijun. Advanced Control of Wheeled Inverted Pendulum Systems. London: Springer London, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

King, S. P. Digital control of an inverted pendulum using an H-infinity design. Manchester: UMIST, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Loram, Ian David. Mechanisms for human balancing of an inverted pendulum using the ankle strategy. Birmingham: University of Birmingham, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Inverted Pendulum [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.80106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Zhijun, Chenguang Yang, and Liping Fan. Advanced Control of Wheeled Inverted Pendulum Systems. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Advanced Control Of Wheeled Inverted Pendulum Systems. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holzapfel, Frank G. Fuzzy logic control of an inverted pendulum with vision feedback. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barrett, Spencer Brown. Predictive control using feedback-: A case study of an inverted pendulum. 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Iriarte, Rafael, and Olfa Boubaker. Inverted Pendulum in Control Theory and Robotics: From Theory to New Innovations. Institution of Engineering & Technology, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Inverted pendulum"

1

Salicone, Simona, and Marco Prioli. "The Inverted Pendulum." In Measuring Uncertainty within the Theory of Evidence, 315–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74139-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Block, Daniel J., Karl J. Åström, and Mark W. Spong. "Stabilizing the Inverted Pendulum." In The Reaction Wheel Pendulum, 39–53. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-01827-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neimark, Juri I. "Stabilizing an inverted pendulum." In Foundations of Engineering Mechanics, 261–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-47878-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mokhtari, Mohand, and Michel Marie. "Cart with inverted pendulum." In Engineering Applications of MATLAB® 5.3 and SIMULINK® 3, 303–46. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0741-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kajita, Shuuji. "Linear Inverted Pendulum-Based Gait." In Humanoid Robotics: A Reference, 1–18. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-7194-9_42-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kajita, Shuuji. "Linear Inverted Pendulum-Based Gait." In Humanoid Robotics: A Reference, 905–22. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-6046-2_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gmiterko, A., and M. Grossman. "N-link Inverted Pendulum Modeling." In Recent Advances in Mechatronics, 151–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05022-0_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaturvedi, D. K., Tanveer Qamar, and M. M. Gupta. "Neuro-Control of Inverted Pendulum." In Advances in Intelligent Systems and Computing, 73–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2709-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ding, Guyue, Yongming Bian, and Meng Yang. "Design and Application of Hydraulic Inverted Pendulum." In Lecture Notes in Mechanical Engineering, 113–25. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_9.

Full text
Abstract:
AbstractThis paper briefly describes the designing process of a hydraulic inverted pendulum including hardware and software design. First, the mechanical structure, including the components of the platform will be introduced. Second, the electrical system including controllers for receiving signals from sensors which measure the variables important for controlling inverted pendulum is about to be shown. Afterwards, the paper will present a mathematical model of the whole platform, then shows up an open loop simulation established by AMESim and Simulink in order to analysis its dynamic characteristic. By comparing the simulation result and reality, the rationality of mathematical model is finally verified.
APA, Harvard, Vancouver, ISO, and other styles
10

Semenov, Mikhail E., Peter A. Meleshenko, Andrey M. Solovyov, and Andrey M. Semenov. "Hysteretic Nonlinearity in Inverted Pendulum Problem." In Springer Proceedings in Physics, 463–506. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19851-4_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Inverted pendulum"

1

Joldis, Adrian. "Supported inverted pendulum, another kind of inverted pendulum." In 2006 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2006. http://dx.doi.org/10.1109/aqtr.2006.254514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tang, Dacheng. "Flying Inverted Pendulum." In 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). IEEE, 2018. http://dx.doi.org/10.1109/iccss.2018.8572363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Le, Tony, and Paul Oh. "NXT Mobile Inverted Pendulum." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49667.

Full text
Abstract:
The intent of this paper is to provide information on how to implement a mobile inverted pendulum using the LEGO® Mindstorms NXT platform for educational purposes in mechatronics. A description of the dynamics of a mobile inverted pendulum is first, followed by a description of the hardware and software components composing the NXT platform. Discussed are the capabilities and the limitations of the NXT system. As a demonstration, a mobile inverted pendulum is built and controlled using a simple PID controller. Sensors used include a HiTechnic gyro sensor to measure angular rate for balancing and the NXT ultrasound sensor for obstacle avoidance. Shown are the simulated and experimental results of the angular rate and velocity control. Lastly, a breakdown of a hypothetical course in mechatronics highlights the described NXT mobile inverted pendulum.
APA, Harvard, Vancouver, ISO, and other styles
4

Hehn, Markus, and Raffaello D'Andrea. "A flying inverted pendulum." In 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011. http://dx.doi.org/10.1109/icra.2011.5980244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singh, Yogesh, Manisha Bhatotia, and Ranajit Mitra. "Hybrid controller for inverted pendulum." In 2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET). IEEE, 2012. http://dx.doi.org/10.1109/apcet.2012.6302042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Jian. "Research on Simple Inverted Pendulum." In 2017 7th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/mcei-17.2017.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kot, Andrzej. "Bi-axial inverted pendulum modelling." In 2013 14th International Carpathian Control Conference (ICCC). IEEE, 2013. http://dx.doi.org/10.1109/carpathiancc.2013.6560532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Junfeng, Haiyan Su, and Tengfei Wu. "ANN Control of Inverted Pendulum." In 2008 First International Conference on Intelligent Networks and Intelligent Systems (ICINIS). IEEE, 2008. http://dx.doi.org/10.1109/icinis.2008.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Felicio, Paulo, Jose Azinheira, and Pedro Lourtie. "Experimental inverted pendulum unfalsified control." In 2012 20th Mediterranean Conference on Control & Automation (MED 2012). IEEE, 2012. http://dx.doi.org/10.1109/med.2012.6265848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Patil, Shishir, Uma Kulkarni, Aditya Ingale, and Rakesh Halligudi. "Rotary Inverted Pendulum-Stability Assessment." In 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). IEEE, 2022. http://dx.doi.org/10.1109/mysurucon55714.2022.9972380.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Inverted pendulum"

1

Altendorfer, Richard, Uluc Saranli, Haldun Komsuoglu, Daniel Koditschek, H. B. Brown, Buehler Jr., Moore Martin, McMordie Ned, Full Dave, and Robert. Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada438810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petrov, Plamen. Dynamics and Adaptive Motion Control of a Two-wheeled Inverted Pendulum Robot. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2018. http://dx.doi.org/10.7546/crabs.2018.07.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seto, Danbing, and Lui Sha. A Case Study on Analytical Analysis of the Inverted Pendulum Real-Time Control System. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada373286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography