Academic literature on the topic 'Inverzní úloha vedení tepla'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inverzní úloha vedení tepla.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Inverzní úloha vedení tepla"

1

Komínek, Jan. "Pokročilé metody pro inverzní úlohy vedení tepla." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-376778.

Full text
Abstract:
Numerical simulations of thermal processes are based on known geometry, material properties, initial and boundaries conditions. The massive use of these simulations in the metallurgical industry (for example for simulation of heat treatment of steel) is limited by the knowledge of precise boundary conditions, which are not easy to determine in compare to other input parameters. Empirical formulas are not sufficiently accurate for most non-trivial processes. Therefore, it is necessary to obtain the boundary conditions by experimental way. Boundary conditions can not be measured directly. The boundary conditions are determined by solving inverse heat conduction problem based on the measured temperature records. This doctoral thesis focuses on two types of the inverse heat conduction problems, which are poorly solved by existing methods. The first type are tasks that contains sharp increase/decrease in the values of the boundary conditions. Two new approaches are proposed and compared in this thesis for this type of tasks. The second type are tasks with non-stationary and non-homogeneous cooling. Three new methods were developed for this case. They are applied for the case of water cooling of vertical aluminum sample. The base characteristics of the current task is inhomogeneous cooling. One part of the surface is cooled intensively by flowing water in contrast to the other part of surface which is cooled only with low intensity since it is protected from direct contact with water by the vapor layer (Leidenfrost effect). The positions of these two part of surface are not stationary (they change during the experiment). The newly developed methods are compared to each other.
APA, Harvard, Vancouver, ISO, and other styles
2

Horák, Aleš. "Návrh experimentu pro řešení inverzní úlohy vedení tepla." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233977.

Full text
Abstract:
this thesis complex inverse heat transfer problem, which is focused on optimal design of experiment, is studied. There are many fields and applications in technical practice, where inverse tasks are or can be applied. On first place main attention is focused on industrial metallurgical processes such as cooling of continues casting, hydraulic descaling or hot rolling. Inverse problems are in general used to calculate boundary conditions of differential equations and in this field are used to find out Heat Transfer Coefficient (HTC). Knowledge of numerical approximation of precise boundary conditions is nowadays essential. It allows for example design of optimized hot rolling mill cooling focused on material properties and final product quality. Sequential Beck’s approach and optimization method is used in this work to solve inverse heat transfer problems. Special experimental test bench measuring heat transfer intensity was developed and built to full fill specific requirements and required accuracy. There were four different types of thermal sensor applied and studied. Those sensors are in usage in Heat Transfer and Fluid Flow laboratory (Heatlab) at various experimental test benches. Each specific sensor was tailored in Heat Transfer and Fluid Flow Laboratory to specific metallurgical application. Fist type of sensor was designed to simulate cooling during continuous casting. Second sensor is used for experiments simulate hot rolling mill cooling, while third sensor is designated for experiments with fast moving hot rolled products. Last sensor is similar to sensor type one, but thermocouple is located parallel to cooled surface. Experimental part of this study covers series of measurements to investigate Heat Transfer Coefficient (HTC) for various types of coolant, cooling mixtures and spray parameters. Results discovered in this study were compared with published scientific articles, and widely extend the knowledge of cooling efficiency for commonly used
APA, Harvard, Vancouver, ISO, and other styles
3

Hřibová, Veronika. "Vývoj inverzní sub-doménové metody pro výpočet okrajových podmínek vedení tepla." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232179.

Full text
Abstract:
It is very important to develop efficient but still accurate and stable numerical methods for solving heat and mass transfer processes in many industrial applications. The thesis deals with an inverse heat conduction problem which is used to compute boundary conditions (temperatures, heat flux or heat transfer coefficient). Nowadays, two approaches are often used for inverse task - sequential estimation and whole domain estimation. The main goal of this work is to develop a new approach, the so-called sub-domain method, which emphasizes advantages just as reduce disadvantages of both methods mentioned above. This approach is then tested on generated prototypic data and on data from real experiments. All methods are compared with respect to accuracy of results as well as to computational efficiency.
APA, Harvard, Vancouver, ISO, and other styles
4

Bellerová, Hana. "Rozvoj inverzních úloh vedení tepla se zaměřením na velmi rychlé procesy v mikroskopických měřítcích." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233976.

Full text
Abstract:
The inverse heat conduction task is solved to determine boundary condition of the heat equation. This work deals with the ways how to increase the accuracy of the results obtained by solving inverse task based on the Beck sequential algorithm. The work is focused on the boundary condition changing very fast. This boundary condition is determinable with difficulty. It is shown that the placement and the type of the thermocouple play major role in accuracy of the calculation. The frequency of measuring and the discriminability of used devices also play a role as well as the setup of parameters in the inverse task. The election of mentioned parameters is described with regard to the speed of cooling. Knowledge from the theoretical part of the work is applied in the experimental part. The cooling intensity is investigated during spraying of the steel sample by water with nanoparticles Al2O3, TiO2, Fe and MWNT at three different concentrations. The experiments were carried out for three spray heights (40, 100, 160 mm), three flow rates (1, 1.5, 2 kg/min) and two types of the nozzle (full cone and solid jet). Surprisingly, the cooling intensity by using nanofluids is lower about 30% in comparison to the cooling intensity of pure water. But there was an exception. The cooling intensity of 1 wt.% of carbon nanotubes in water falling from the full cone nozzle placed in distance of 100 mm from the steel surface was higher about 174%. Finally, the reasons of the behavior of nanofluids are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Ondroušková, Jana. "Rozvoj inverzních úloh vedení tepla řešených s využitím optimalizačních postupů a vysokého stupně paralelizace." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234338.

Full text
Abstract:
In metallurgy it is important to know a cooling efficiency of a product as well as cooling efficiency of working rolls to maximize the quality of the product and to achieve the long life of working rolls. It is possible to examine this cooling efficiency by heat transfer coefficients and surface temperatures. The surface temperature is hardly measured during the cooling. It is better to compute it together with heat transfer coefficient by inverse heat conduction problem. The computation is not easy and it uses estimated values which are verified by direct heat conduction problem. The time-consuming of this task can be several days or weeks, depends on the complexity of the model. Thus there are tendencies to shorten the computational time. This doctoral thesis considers the possible way of the computing time shortening of inverse heat conduction problem, which is the parallelization of this task and its transfer to a graphic card. It has greater computing power than the central processing unit (CPU). One computer can have more compute devices. That is why the computing time on different types of devices is compared in this thesis. Next this thesis deals with obtaining of surface temperatures for the computation by infrared line scanner and using of inverse heat conduction problem for the computing of the surface temperature and heat transfer coefficient during passing of a test sample under cooling section and cooling by high pressure nozzles.
APA, Harvard, Vancouver, ISO, and other styles
6

Kvapil, Jiří. "Tepelný odpor v kontaktu těles za vysokých teplot." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-255771.

Full text
Abstract:
Nowadays numerical simulations are used to optimize manufacturing process. These numerical simulations need a large amount of input parameters and some of these parameters have not been sufficiently described. One of this parameter is thermal contact resistance, which is not sufficiently described for high temperatures and high contact pressure. This work describes experimental measuring of thermal contact resistance and how to determine thermal contact conductance which can be used as a boundary condition for numerical simulations. An Experimental device was built in Heat Transfer and Fluid Flow Laboratory, part of Brno University of Technology, and can be used for measuring thermal contact conductance in various conditions, such as contact pressure, initial temperatures of bodies in contact, type of material, surface roughness, presence of scales on the contact surface. Bodies in contact are marked as a sensor and a sample, both are embedded with thermocouples. The temperature history of bodies during an experiment is measured by thermocouples and then used to estimate time dependent values of thermal contact conductance by an inverse heat conduction calculation. Results are summarized and the dependence of thermal contact conductance in various conditions is described.
APA, Harvard, Vancouver, ISO, and other styles
7

Komínek, Jan. "Heuristické algoritmy pro optimalizaci." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230306.

Full text
Abstract:
This diploma thesis deals with genetic algorithms and their properties. Particular emphasis is placed on finding the influence of mutation and population size. Genetic algorithms are applied on inverse heat conduction problems (IHCP) in the second part of the thesis. Several different approaches and coding methods were tested. Properties of genetic algorithms were improved by definition of two new genetic operators – manipulation and sorting. Reported theoretical findings were tested on the real data of inverse heat conduction problem. The library for easy implementation of GA for solving general optimization problems in C ++ was created and is described in the last chapter.
APA, Harvard, Vancouver, ISO, and other styles
8

Musil, Jiří. "Software pro řešení inverzních úloh přenosu tepla." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417446.

Full text
Abstract:
Tato práce se zabývá vytvořením softwarového nástroje pro simulaci přenosu tepla se zaměřením na využití inverzní úlohy. Je zde popsána základní teorie inverzních úloh a přenosu tepla, na kterou navazuje odvození numerické rovnice přenosu tepla, vhodné pro počítačovou simulaci. Hlavní část práce se věnuje návrhu a samotné implementaci softwarového řešení, s ohledem jak na funkčnost, tak na uživatelskou přívětivost. Kromě výpočtového modelu, který je zodpovědný za průběh simulace, je vytvořeno také plnohodnotné uživatelské rozhraní (GUI), umožňující jednoduchou interakci s výpočtovým modelem. Závěrem práce je prezentování dosažených výsledků a jejich porovnání s reálným experimentem, stejně jako zjištění vlivu vstupních parametrů na kvalitu simulace.
APA, Harvard, Vancouver, ISO, and other styles
9

Kůdelová, Tereza. "Řešení inverzních úloh v oblasti výměníků hmoty a tepla." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231153.

Full text
Abstract:
This master’s thesis deals with the dynamic behaviour of the heat exchangers which is described by a system of differential equations. In this connection, it contains general informations about heat transfer, heat exchangers and their arrangements. The main aim of this thesis is to solve the inverse problem of the antiparallel arrangement and discuss the question of the controllability, observability and identifiability of its parameters.
APA, Harvard, Vancouver, ISO, and other styles
10

Vavrečka, Lukáš. "VLIV PARAMETRŮ VYSOKOTLAKÉHO OSTŘIKU NA KVALITU ODOKUJENÍ." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233948.

Full text
Abstract:
This work is focussed on hydraulic descaling of hot surfaces. Hydraulic descaling is a process when layers of oxides are removed from hot steel surfaces during continuous rolling. High pressure water beam is used. Quality of descaled surfaces is important for final quality of rolled product. Insufficient descaling causes drop of final quality, degradation of rolls and lost of yields. High-pressure water beam has two effects on a scale layer. The first effect is mechanical caused by impact pressure. The second one is a relatively intensive thermal shock depending on a set of parameters (water pressure, nozzle type, distance from the surface, inclination angle, speed of product moving). There are a lot of theories about principles of scales removing. Main task of this work is to make it clear which theory is acceptable and which is just ,,theory”. For this purpose mathematical modelling and experimental work were used. In experimental part, three types of experimental measurement were done. First one, measurement of dynamical effect of water beam – impact pressure. Second one, measurement of temperature drop when a product is passing under the nozzle. Measured data (temperatures) from this measurement are evaluated with inverse task and heat transfer coefficient is obtained. And the third experimental measurement is simulation of whole process of descaling. Quality of descaled surfaces is valuated according to amount of remained oxide scales. Data from firs and second experimental measurement are used as boundary conditions for mathematical modelling. For mathematical simulations, FEM (finite element method) system ANSYS was used. Obtained data from experimental measurement were applied on 2D and 3D models of basic steel material with layer of scale. Influence of theses data on final temperature, stress and strain fields were observed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography