To see the other types of publications on this topic, follow the link: Ion current.

Journal articles on the topic 'Ion current'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ion current.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Guo-Chang, Lai-Bo Song, Xiao-Hong Wang, Chao-Qing Li, Bo Liu, Yuan-Di Zhao, and Wei Chen. "Ion current rectification in combination with ion current saturation." Analytica Chimica Acta 1117 (June 2020): 35–40. http://dx.doi.org/10.1016/j.aca.2020.04.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Serša, Igor. "Current density imaging sequences with separation of mobile-ion current from immobile-ion current." Journal of Magnetic Resonance 196, no. 1 (January 2009): 33–38. http://dx.doi.org/10.1016/j.jmr.2008.09.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keller, R. "High-current ion sources for ion implantation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (April 1989): 518–21. http://dx.doi.org/10.1016/0168-583x(89)91036-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brown, Ian G., James E. Galvin, and Robert A. MacGill. "High current ion source." Applied Physics Letters 47, no. 4 (August 15, 1985): 358–60. http://dx.doi.org/10.1063/1.96163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Hanqing, Weijun Fan, Jianwei Feng, Peiliang Yan, Shuchan Qi, and Rongchun Zhang. "Parameter Determination and Ion Current Improvement of the Ion Current Sensor Used for Flame Monitoring." Sensors 21, no. 3 (January 20, 2021): 697. http://dx.doi.org/10.3390/s21030697.

Full text
Abstract:
Flame monitoring of industrial combustors with high-reliability sensors is essential to operation security and performance. An ion current flame sensor with a simple structure has great potential to be widely used, but a weak ion current is the critical defect to its reliability. In this study, parameters of the ion current sensor used for monitoring flames on a Bunsen burner are suggested, and a method of further improving the ion current is proposed. Effects of the parameters, including the excitation voltage, electrode area, and electrode radial and vertical positions on the ion current, were investigated. The ion current grew linearly with the excitation voltage. Given that the electrodes were in contact with the flame fronts, the ion current increased with the contact area of the cathode but independent of the contact area of the anode. The smaller electrode radial position resulted in a higher ion current. The ion current was insensitive to the anode vertical position but largely sensitive to the cathode vertical position. Based on the above ion current regularities, the sensor parameters were suggested as follows: The burner served as a cathode and the platinum wire acted as an anode. The excitation voltage, anode radial and vertical positions were 120 V, 0 mm, and 6 mm, respectively. The method of further improving the ion current by adding multiple sheet cathodes near the burner exit was proposed and verified. The results show that the ion current sensor with the suggested parameters could correctly identify the flame state, including the ignition, combustion, and extinction, and the proposed method could significantly improve the magnitude of the ion current.
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Bin-Bin, Nong Xiang, Jing Ou, and Xiao-Yun Zhao. "Energetic Ion Effects on the Ion Saturation Current." Chinese Physics Letters 34, no. 1 (January 2017): 015203. http://dx.doi.org/10.1088/0256-307x/34/1/015203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huixing, Zhang, Zhang Xiaoji, Zhou Fengsheng, Zhang Shenji, and Han Zhuen. "High‐current metal‐ion source for ion implantation." Review of Scientific Instruments 61, no. 1 (January 1990): 574–76. http://dx.doi.org/10.1063/1.1141921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Toya, H., T. Hayashi, and Y. Murai. "Wall ion current in high-current vacuum arcs." Journal of Physics D: Applied Physics 20, no. 11 (November 14, 1987): 1484–89. http://dx.doi.org/10.1088/0022-3727/20/11/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Komurasaki, Kimiya, and Yoshihiro Arakawa. "Hall current ion-thruster performance." Journal of Propulsion and Power 8, no. 6 (November 1992): 1212–16. http://dx.doi.org/10.2514/3.11464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gwilliam, Russell. "Current Trends in Ion Implantation." Materials Science Forum 363-365 (April 2001): 20–24. http://dx.doi.org/10.4028/www.scientific.net/msf.363-365.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Voronin, G., D. Solnyshkov, M. Svinin, and A. Solnyshkov. "High-current ECR ion source." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 161-163 (March 2000): 1118–22. http://dx.doi.org/10.1016/s0168-583x(99)00988-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Powell, Matthew R., Michael Sullivan, Ivan Vlassiouk, Dragos Constantin, Olivier Sudre, Craig C. Martens, Robert S. Eisenberg, and Zuzanna S. Siwy. "Nanoprecipitation-assisted ion current oscillations." Nature Nanotechnology 3, no. 1 (December 23, 2007): 51–57. http://dx.doi.org/10.1038/nnano.2007.420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sudan, R. N. "High-current ion-ring accelerator." Physical Review Letters 70, no. 11 (March 15, 1993): 1623–26. http://dx.doi.org/10.1103/physrevlett.70.1623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Katz, Ira, Richard R. Hofer, and Dan M. Goebel. "Ion Current in Hall Thrusters." IEEE Transactions on Plasma Science 36, no. 5 (October 2008): 2015–24. http://dx.doi.org/10.1109/tps.2008.2004219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sethi, R. C., and N. M. Thakur. "High‐current deuteron ion source." Review of Scientific Instruments 61, no. 1 (January 1990): 469–71. http://dx.doi.org/10.1063/1.1141276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Y. G., D. Q. Zhou, and Z. X. Luo. "High current O+ ion source." Review of Scientific Instruments 65, no. 4 (April 1994): 1325–26. http://dx.doi.org/10.1063/1.1144999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Conger, J., A. Peczalski, and M. S. Shur. "Subthreshold current ion GaAs MESFETs." IEEE Electron Device Letters 9, no. 3 (March 1988): 128–29. http://dx.doi.org/10.1109/55.2064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sampath, W. S., R. Wei, and P. J. Wilbur. "Ultrahigh Current Density Ion Implantation." JOM 39, no. 4 (April 1987): 17–19. http://dx.doi.org/10.1007/bf03258854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rück, D. M., H. Emig, P. Spädtke, B. H. Wolf, I. G. Brown, and Bo Torp. "High current metallic ion beams." Vacuum 39, no. 11-12 (January 1989): 1191–93. http://dx.doi.org/10.1016/0042-207x(89)91119-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schlichter, L. C. "Acute exposure to human interferon-α affects ion currents in human natural killer cells." Canadian Journal of Physiology and Pharmacology 70, no. 3 (March 1, 1992): 365–76. http://dx.doi.org/10.1139/y92-046.

Full text
Abstract:
Interferon-α (IFN-α) is a particularly potent stimulator of human natural killer (NK) cell activity. The initial trigger for IFN action is not known, but there is indirect evidence from a number of cell types that changes in ion channel activity are among the earliest responses. Previous evidence includes changes in Ca2+ fluxes and intracellular activity, membrane potential changes, and effects of ion-channel blockers. Killing by human NK cells is dependent on external Ca2+ and on K+ channel activity. In the present study we have confirmed this dependence and the augmentation by human IFN-α. Then we directly studied the effects of IFN-α on ion currents in human NK cells using the patch-clamp electrophysiological techniques. We find that IFN-α can increase the predominant K+ current near the resting potential but suppresses it at higher voltages. Within 1 min after acute IFN-α treatment a new current is induced. This small current appears to be through nonselective cation channels that allow monovalent and divalent cations, including Ca2+ to permeate. This current presents a possible early triggering mechanism whereby acute exposure to IFN-α augments NK cytotoxicity.Key words: natural killer cell, interferon, K+ channel, cation channel, calcium, natural killer augmentation.
APA, Harvard, Vancouver, ISO, and other styles
21

Tanjyo, Masayasu, Shuichi Fujiwara, Hiromichi Sakamoto, and Masao Naito. "Control of ion beam current density and profile for high current ion implantation systems." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 55, no. 1-4 (April 1991): 86–89. http://dx.doi.org/10.1016/0168-583x(91)96141-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Walther, S. R. "A high‐current microwave ion source for ion implantation." Review of Scientific Instruments 63, no. 4 (April 1992): 2562–64. http://dx.doi.org/10.1063/1.1142889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Siegel, Benjamin M., and John Mioduszewski. "High-Brightness Gaseous Field ION Source for Light ION Species." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 1 (August 12, 1990): 200–201. http://dx.doi.org/10.1017/s0424820100179750.

Full text
Abstract:
We have reported on the very high brightness gaseous field ion source that has been developed at Cornell to produce high angular current density H2+ ion beams with low energy widths. Axially oriented H2+ ion beams from single emission sites with angular currents dl/dΩ= 10-20 μa/sr are obtained routinely. The energy width (FWHM) has been measured to be Δe=1.0 ev. H2+ beams with angular currents as high as 70 μa/sr. have been observed, but these higher current beams have a tail spread on their energy distribution curve.We have now extented this source to produce ion species of He+ with angular current densities, dl/dΩ, in the 10-15 μa/sr range and ions beams of Ne+, A+, N2+ and O+ ions with angular currents dl/dΩ of 3-7 μa/sr.Ion beams with these characteristics have have been achieved by operating the gaseous field ion source under the following conditions:1. In an ultrahigh vacuum system at cryogenic temperatures cooled with LHe and heated to obtain an optimum balance of gas concentration at the emitter tip with physisorption on the tip at temperatures that allow good surface transport from a large area near the apex of the tip to the emission site.
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu, and Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification." Journal of Physical Chemistry C 123, no. 22 (May 13, 2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ratschko, D., B. G. Zhou, D. Knolle, and M. Glaser. "Investigations on ion beams from a high-current ion source." IEEE Transactions on Instrumentation and Measurement 46, no. 2 (April 1997): 588–91. http://dx.doi.org/10.1109/19.571925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Okada, M., N. Sakudo, K. Hayashi, N. Ikenaga, S. Okuji, T. Onogawa, T. Maesaka, et al. "Improvement of microwave ion source for higher B+ ion current." Review of Scientific Instruments 71, no. 2 (February 2000): 713–15. http://dx.doi.org/10.1063/1.1150270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Artemyev, A. V., V. Angelopoulos, I. Y. Vasko, X. ‐J Zhang, A. Runov, and L. M. Zelenyi. "Ion Anisotropy in Earth's Magnetotail Current Sheet: Multicomponent Ion Population." Journal of Geophysical Research: Space Physics 124, no. 5 (May 2019): 3454–67. http://dx.doi.org/10.1029/2019ja026604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gaus, A. D., W. T. Htwe, J. A. Brand, T. J. Gay, and M. Schulz. "Energy spread and ion current measurements of several ion sources." Review of Scientific Instruments 65, no. 12 (December 1994): 3739–45. http://dx.doi.org/10.1063/1.1144500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ghanbari, E., J. Boers, R. Liebert, L. Ayers, and P. Bazeley. "Development of a high current ion source for ion implantation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (May 1985): 767–70. http://dx.doi.org/10.1016/0168-583x(85)90103-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Brown, Ian, and Jack Washburn. "The MEVVA ion source for high current metal ion implantation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 21, no. 1-4 (January 1987): 201–4. http://dx.doi.org/10.1016/0168-583x(87)90826-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

MATSUFUJI, Naruhiro, and Yoshiyuki IWATA. "Current Status of Carbon-ion Radiotherapy." Journal of the Institute of Electrical Engineers of Japan 137, no. 6 (2017): 365–68. http://dx.doi.org/10.1541/ieejjournal.137.365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zuberi, S. M. "Current topic: Ion channels and neurology." Archives of Disease in Childhood 84, no. 3 (March 1, 2001): 277–80. http://dx.doi.org/10.1136/adc.84.3.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Deng, Xiao Long, Tomohide Takami, Jong Wan Son, Tomoji Kawai, and Bae Ho Park. "Ion Current Oscillation in Glass Nanopipettes." Journal of Physical Chemistry C 116, no. 28 (July 5, 2012): 14857–62. http://dx.doi.org/10.1021/jp3014755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shinada, Takahiro. "Current status of single ion implantation." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 4 (July 1998): 2489. http://dx.doi.org/10.1116/1.590196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kondrashev, S., A. Balabaev, V. Zorin, and A. Sidorov. "High current density ion-beam extraction." Radiation Effects and Defects in Solids 160, no. 10-12 (October 2005): 495–97. http://dx.doi.org/10.1080/10420150500492230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Skalyga, V. A., S. V. Golubev, I. V. Izotov, R. L. Lapin, S. V. Razin, A. V. Sidorov, and R. A. Shaposhnikov. "High-Current Pulsed ECR Ion Sources." Plasma Physics Reports 45, no. 10 (October 2019): 984–89. http://dx.doi.org/10.1134/s1063780x19080087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Taylor, T., J. S. C. Wills, E. C. Douglas, and T. Tran Ngoc. "High‐current solid‐feed ion source." Review of Scientific Instruments 61, no. 1 (January 1990): 454–56. http://dx.doi.org/10.1063/1.1141271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ehlers, K. W. "High current negative ion sources (invited)." Review of Scientific Instruments 61, no. 1 (January 1990): 662–64. http://dx.doi.org/10.1063/1.1141899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wilbur, Paul J., and Ronghua Wei. "High‐current‐density metal‐ion implantation." Review of Scientific Instruments 63, no. 4 (April 1992): 2491–93. http://dx.doi.org/10.1063/1.1142922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Brown, I. G., J. E. Galvin, R. A. MacGill, and R. T. Wright. "Miniature high current metal ion source." Applied Physics Letters 49, no. 16 (October 20, 1986): 1019–21. http://dx.doi.org/10.1063/1.97458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wolf, B. H. "High current metal ion production (invited)." Review of Scientific Instruments 65, no. 4 (April 1994): 1248–52. http://dx.doi.org/10.1063/1.1145023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Spädtke, P., H. Emig, J. Klabunde, R. Mayr, D. M. Rück, and K. Tinschert. "Acceleration of high‐current ion beams." Review of Scientific Instruments 67, no. 3 (March 1996): 1146–48. http://dx.doi.org/10.1063/1.1146714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shubaly, M. R., R. G. Maggs, and A. E. Weeden. "A High-Current Oxygen Ion Source." IEEE Transactions on Nuclear Science 32, no. 5 (1985): 1751–53. http://dx.doi.org/10.1109/tns.1985.4333711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Biasca, Rodger, and Joseph Wang. "Ion current collection in spacecraft wakes." Physics of Plasmas 2, no. 1 (January 1995): 280–88. http://dx.doi.org/10.1063/1.871098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Matsuda, K., T. Kawai, M. Naitoh, and M. Aoki. "A high current ion implanter machine." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 6, no. 1-2 (January 1985): 35–38. http://dx.doi.org/10.1016/0168-583x(85)90606-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hopfgartner, Gérard. "Current developments in ion mobility spectrometry." Analytical and Bioanalytical Chemistry 411, no. 24 (July 30, 2019): 6227. http://dx.doi.org/10.1007/s00216-019-02028-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xia, Xing-Hua. "Marked ion current rectification in microchannels." Science China Chemistry 60, no. 6 (April 27, 2017): 685–86. http://dx.doi.org/10.1007/s11426-017-9052-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shimada, Masaru, Iwao Watanabe, and Yasuhiro Torii. "Very high current ECR ion source." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 39, no. 1-4 (March 1989): 242–45. http://dx.doi.org/10.1016/0168-583x(89)90780-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schroeder, James B. "High current pelletron for ion implantation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (April 1989): 515–17. http://dx.doi.org/10.1016/0168-583x(89)91035-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nasser-Ghodsi, M., M. Farley, J. Grant, D. Bernhardt, M. Foley, S. Holden, T. Bowe, C. Singer, K. Dixit, and G. Angel. "A high-current ion implanter system." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 55, no. 1-4 (April 1991): 398–407. http://dx.doi.org/10.1016/0168-583x(91)96201-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography