Academic literature on the topic 'Ion selective potentiometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ion selective potentiometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ion selective potentiometry"
Pleniceany, Maria, Marian Isvoranu, and Cezar Spinu. "Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel." Journal of the Serbian Chemical Society 70, no. 2 (2005): 269–76. http://dx.doi.org/10.2298/jsc0502269p.
Full textYao, Yao, Yibin Ying, and Jianfeng Ping. "Development of a Graphene Paper-Based Flexible Solid-Contact Lead Ion-Selective Electrode and its Application in Water." Transactions of the ASABE 62, no. 2 (2019): 245–52. http://dx.doi.org/10.13031/trans.12906.
Full textIsvoranu, Marian, Constantin Luca, Maria Pleniceanu, and Cezar Spinu. "Studies on a Pb2+ - selective electrode with a macrocyclic liquid membrane: Potentiometric determination of pb2+ ions." Journal of the Serbian Chemical Society 71, no. 12 (2006): 1345–52. http://dx.doi.org/10.2298/jsc0612345i.
Full textGuagnellini, E., G. Spagliardi, G. Bernardi, and P. Stella. "Reliability of IL Monarch ion-selective electrode module for sodium, potassium, and chloride measurements." Clinical Chemistry 34, no. 4 (April 1, 1988): 746–48. http://dx.doi.org/10.1093/clinchem/34.4.746.
Full textDe Marco, Roland, Graeme Clarke, and Bobby Pejcic. "Ion-Selective Electrode Potentiometry in Environmental Analysis." Electroanalysis 19, no. 19-20 (October 2007): 1987–2001. http://dx.doi.org/10.1002/elan.200703916.
Full textYadav, Amar Prasad. "Preparation of Low Cost Solid State Silver Sulfide Based Bromide Selective Electrodes." Journal of Nepal Chemical Society 27 (August 22, 2012): 100–106. http://dx.doi.org/10.3126/jncs.v27i1.6668.
Full textDEL TÓRO DÉNIZ, Rubén, Ana María PEÓN ESPINOSA, Hubert DANDIE MARSHALLECK, and Andres BROCAR ESTEVEZ. "Uses of nitrate ion sensitive electrodes." Eclética Química 22 (1997): 205–10. http://dx.doi.org/10.1590/s0100-46701997000100017.
Full textLima, J. L. F. C., and M. C. B. S. M. Montenegro. "Dopamine Ion-Selective Electrode for Potentiometry in Pharmaceutical Preparations." Mikrochimica Acta 131, no. 3-4 (August 25, 1999): 187–90. http://dx.doi.org/10.1007/pl00010030.
Full textBerto, S., E. Chiavazza, P. Canepa, E. Prenesti, and P. G. Daniele. "Assessing the formation of weak sodium complexes with negatively charged ligands." Physical Chemistry Chemical Physics 18, no. 18 (2016): 13118–25. http://dx.doi.org/10.1039/c6cp00192k.
Full textМантров, Геннадий Иванович, Мариана Александровна Феофанова, and Егор Максимович Грачев. "ION-SELECTIVE ELECTRODE FOR DETERMINATION OF METFORMIN IN PHARMACEUTICAL PREPARATIONS." Вестник Тверского государственного университета. Серия: Химия, no. 3(41) (November 10, 2020): 124–29. http://dx.doi.org/10.26456/vtchem2020.3.13.
Full textDissertations / Theses on the topic "Ion selective potentiometry"
Danish, Ekram Yousif. "Determination of ionized magnesium with ion-selective electrodes." Thesis, University of Newcastle Upon Tyne, 1996. http://hdl.handle.net/10443/833.
Full textStevens, Anthony Clark 1960. "CHARACTERIZATION OF ION-SELECTIVE ELECTRODES BY ELECTROCHEMICAL STUDIES OF ION TRANSFER AT THE LIQUID/LIQUID INTERFACE." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276364.
Full textKelly, Patricia McGilvray. "Proposed reference method for the measurement of ionized calcium in blood." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332246.
Full textCrespo, Paravano Gastón Adrián. "Solid contact ion selective electrodes based on carbon nanotubes." Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/9050.
Full textPotentiometric classical ion selective electrodes (ISEs) have been used for analytical applications since the beginning of 1900's. Determination of pH by a glass membrane ion selective electrode emerged at the beginning, being the first ISEs developed. pH glass electrode is still one the most useful and robust sensors for routine measurements both in laboratories and industries.
Throughout the years, new technologies, ideas and designs have been developed and incorporated successfully in the potentiometric fields so as to provide answers to the new society's needs. Therefore, the ion selective electrodes developed in this thesis are a step further in the progress of ISEs and must be considered as products of the scientific envisioning, growth, and interdisciplinary cooperation of many research teams over many years of continuous efforts.
The sensing part can be regarded nowadays as well developed, although it has been during only the last few years when considerable improvements have taken place in the development of new polymeric membranes, ionophores and lipophilic ions. Moreover, the understanding of the theoretical sensing mechanism has been a powerful solid backbone in the rise of ISEs.
Miniaturization of classical ISEs requires making all solid contact electrodes to avoid the intrinsic drawbacks of the inner solution. In this manner, the transduction layer has been the focus of attention for the two last decades. New solid contact transducers having the capacity to convert an ionic current into an electronic current have been emerging. Within them, conducting polymers have played an important role in the transduction of the potentiometric signal, being the most used in solid contact ion selective electrodes (SC-ISEs) up to now. However, the behaviour of conducting polymers can be further improved. For instance, their sensitivity to light one of main operational issues yet to be solved.
In the present context of searching for new materials able to transduce potentiometric signals we selected and tested carbon nanotubes (CNTs). CNTs, which were rediscovered by Ijima in 1991, display excellent electronic properties in terms of signal transduction. In addition, due to their chemical reactivity CNTs can be easily functionalized with receptors or other functional groups. In fact, depending on the type of functionalization the macroscopic and microscopic properties of CNTs can be drastically changed. This nanostructured material had not been used previously as a solid contact material in ISEs.
The main aim of this thesis is to demonstrate that CNTs can act as a clean and efficient transducer in SC-ISEs overcoming the drawbacks displayed by the previously assayed solid contact materials. The developed electrodes were used in different conditions to determine several ions in different sample types, demonstrating the capabilities of this nanostructured material.
The thesis has been structured in different chapters, each one containing the following information:
· Chapter 1 provides a short historical overview of potentiometric ISEs. The evolution from the "classical ISEs" to the SC-ISEs is briefly illustrated. Once the motivation for thesis is described, the general and specific objectives of the thesis are reported.
· Chapter 2 reports the scientific foundations of the developed electrodes. All components of the ISE, sensing layer, transducers and detection systems are introduced. Analytical performance characteristics of ISEs are also described.
· Chapter 3 corresponds to the experimental part. Reagents, protocols, procedures and instruments used in the thesis are reported.
· Chapter 4 provides the demonstration that CNTs can act as a transducer layer in SC-ISEs. The first SC-ISEs based on CNTs are characterized by electrochemical and optical techniques.
· Chapter 5 contains the experimental results that lead to the elucidation of the possible transduction mechanism of CNTs in SC-ISEs. Electrochemical impedance spectroscopy (EIS) is employed as the main characterization technique.
· Chapter 6 is composed of four sections reporting different analytical applications. In the first section, the common pH electrode is developed using a solid contact technology based on CNTs. In the second section, the development of SC-ISEs based on a new synthetic ionophore selective to choline, and CNTs as transducers is shown. In the third section, watertight and pressure-resistant SC-ISEs based on CNTs are developed and tested in aquatic research to obtain information about the gradient profiles along the depth of the lakes. In the fourth section, SC-ISEs based on CNTs are adapted for the on-line control of a denitrification catalytic process.
· Chapter 7 reports the possibilities of miniaturization of the SC-ISEs based on CNTs to reach a nanometric electrode. Potentiometric and optical characterizations are described in this section. Moreover, a discussion about the limitations of the real miniaturization in potentiometry is undertaken.
· Chapter 8 points out the conclusions of the thesis. In addition, future prospects are suggested.
· Finally, several appendices are added to complete the doctoral thesis.
El principal objetivo de esta tesis es el desarrollo de electrodos selectivos de iones de contacto sólido, ESIs-CS, utilizando como capa transductora una red compuesta de nanotubos de carbono.
Los electrodos potenciométricos selectivos de iones han sido utilizados en aplicaciones analíticas desde comienzos de 1900. La determinación de pH mediante electrodos de vidrio selectivo de iones fue el primer ESI desarrollado. Hoy en día, el electrodo de vidrio para la determinación de pH es todavía uno de los más útiles y robustos sensores utilizados en mediciones rutinarias tanto en laboratorios como en industrias.
A lo largo de los años, nuevas tecnologías, ideas y diseños han sido desarrollados e incorporados satisfactoriamente en el campo potenciométrico proporcionando soluciones a las necesidades en continua evolución de la sociedad. De esta manera, los electrodos selectivos de iones desarrollados en esta tesis son un paso más en el progreso de los ESIs y deben ser considerados como el producto de una sólida base científica, del crecimiento y de la cooperación interdisciplinaria de diversos grupos de investigación durante varios años.
La parte del sensor donde tiene lugar el reconocimiento químico y donde se genera el potencial dependiente de la muestra en estudio en los ESIs se puede considerar, en estos días, ampliamente desarrollada, aunque considerables mejoras han tenido lugar durante los últimos años, especialmente en el desarrollo de nuevas membranas poliméricas, ionóforos e iones lipofílicos. Sobretodo, el estudio y la comprensión del mecanismo teórico del sensor ha sido muy importante en el crecimiento y desarrollo de los ESIs.
El concepto de electrodos selectivos de iones de estado sólido surge como requisito vital para evitar las intrínsecas desventajas de la solución interna, en el proceso de miniaturización de los ESIs clásicos. De esta forma, la capa transductora ha sido el principal punto de atención durante dos décadas. Así, nuevos transductores de contacto sólido con la capacidad de convertir una corriente iónica en una corriente electrónica han sido desarrollados. Entre ellos, los polímeros conductores han jugado un importante papel en la transducción de la señal potenciométrica, siendo éstos los más empleados en los electrodos selectivos de iones de contacto sólido (ESIs-CS). Sin embargo el comportamiento de los polímeros conductores puede ser mejorado. Por ejemplo, la sensibilidad hacia la luz de estos materiales es un inconveniente todavía no resuelto.
En este contexto de investigación de nuevos materiales capaces de actuar como transductor de una señal potenciométrica, se han escogido y estudiado los nanotubos de carbono (NTCs) como transductores. Los NTCs fueros redescubiertos por Ijima en 1991, y muestran excelentes propiedades electrónicas en términos de traducción de señal. Además, debido a su reactividad química, los NTCs pueden ser fácilmente funcionalizados con receptores u otros grupos funcionales. De hecho, sus propiedades macroscópicas y microscópicas pueden ser afectadas drásticamente dependiendo del tipo y grado de funcionalización. Este material nanoestructurado no había sido previamente utilizado como transductor en ISEs.
El principal propósito de esta tesis es demostrar que los nanotubos de carbono pueden actuar de forma eficiente como transductor en electrodos selectivos de iones de estado sólido logrando vencer las desventajas de los transductores previamente mencionados. Los electrodos desarrollados fueron usados en diferentes condiciones para determinar distintos iones en diversos tipos de sistemas, demostrando las extraordinarias capacidades de este material nanoestructurado.
Esta tesis ha sido estructurada en capítulos que contienen la siguiente información:
· El Capítulo 1 proporciona una breve visión histórica de lo electrodos potenciométricos selectivos de iones. Se ilustra la evolución desde los "clásicos ESIs" hasta los actuales "ESIs-CS". Además se señalan en esta sección los objetivos generales y específicos.
· El Capitulo 2 contiene las bases científicas de los electrodos desarrollados. Se introducen todos los componentes que integran un ESI, tales como: capa reconocedora, capa transductora y sistema de detección. A continuación se describen los parámetros analíticos de calidad de los ESIs.
· El Capitulo 3 describe la parte experimental. Se recogen los reactivos, protocolos, procedimientos e instrumentos usados a lo largo de la tesis.
· El Capitulo 4 provee de la demostración de que los NTCs pueden actuar eficientemente como capa transductora en SC-ISEs. Se caracteriza el primer ESI-CS integrado por NTCs mediante técnicas ópticas y electroquímicas.
· El Capitulo 5 contiene los resultados experimentales que permiten la posible elucidación del mecanismo de transducción de los NTCs en los ESIs-CS. La Espectroscopia de Impedancia Electroquímica (ESI) es utilizada como la principal técnica de caracterización.
· El Capitulo 6 está integrado por cuatro secciones con diferentes aplicaciones analíticas. En la primera sección, se desarrolla un electrodo de pH que usa NTCs como nueva tecnología transductora en ESIs-CS. En la segunda sección se muestra el desarrollo de un ESI-CS integrado por un ionóforo sintético selectivo a colina, y NTCs como transductores. En la tercera sección, ESIs-CS basados en NTCs, resistentes a altas presiones y totalmente herméticos, se desarrollan y prueban en investigaciones acuáticas con la finalidad de obtener información sobre los gradientes de concentración de iones en función de la profundidad de un lago. En la cuarta sección ESIs-CS basados en NTCs se adaptan para el control on-line de un proceso catalítico de desnitrificación.
· El Capitulo 7 presenta la posibilidad de la miniaturización de los ESIs-CS basados en NTCs logrando obtener un electrodo nanométrico. Se muestran en esta sección la caracterización óptica y potentiométrica. Además, se discuten las limitaciones de la miniaturización real de los ESIs en potenciometría.
· El Capitulo 8 contiene las conclusiones de la tesis. Adicionalmente, se sugieren las perspectivas futuras del trabajo presentado.
· Finalmente, se añaden algunos apéndices como complemento de la tesis doctoral.
Leblanc, Sylvie. "Réalisation d'électrodes sélectives au NA**(+) et K**(+) en vue d'une adaptation sur des appareils de biologie clinique." Nancy 1, 1986. http://www.theses.fr/1986NAN10355.
Full textKimbeni, Malongo Trésor. "Développement d'électrodes sélectives pour l'analyse de composés d'intérêt pharmaceutique: antipaludéens et halogénures." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210504.
Full textLe travail de thèse porte sur le développement d’électrodes sélectives originales et performantes pour l’analyse de composés d’intérêt pharmaceutique.
La partie introductive traite des notions relatives à l’électrochimie mais également de notions sur les molécules médicamenteuses étudiées, en l’occurrence les principes antipaludéens et l’iode.
La partie expérimentale se subdivise en deux parties distinctes selon le type d’électrodes sélectives auxquelles font appel les techniques électrochimiques.
La première partie concerne l’élaboration, la caractérisation et l’application des électrodes potentiométriques à membrane polymérique incluant une paire d’ions et sélectives à diverses molécules organiques pharmacologiquement actives (antipaludéens). Leur application aussi bien en analyse pharmaceutique qu’en cinétique de dissolution est décrite.
La deuxième partie est consacrée à l’élaboration d’un type de senseur ampérométrique original à pâte de carbone à base d’argent micronisé ou colloïdal et à la comparaison de ses performances avec l’électrode d’argent métallique. L’intérêt analytique est mis en évidence par la détermination quantitative des iodures.
Les différents aspects susceptibles d’influencer leur comportement, dont la nature des agents précipitants (tétraphénylborate de sodium et le tétrakis (4-chlorophényl) borate de potassium) et de plastifiants ont été investigués.
Les bonnes performances des ces électrodes en analyse quantitative ont permis d’explorer les possibilités de leur utilisation à l’étude de la cinétique de dissolution.
L’ampérométrie à électrode à pâte de carbone modifiée à base d’argent à l’échelle micronisée (35% m/m) couplée à la chromatographie liquide ionique s’est avérée très sensible vis-à-vis des iodures en particulier et des halogénures en général. Les facteurs susceptibles d’influencer les grandeurs de séparation et la réponse de l’électrode ont été investigués et l’exploitation du signal ampérométrique permet le dosage sélectif et rapide de faibles concentrations en iodures. Les informations fournies par les mesures réalisées en voltampérométrie cyclique à l’aide des mêmes électrodes permettent une bonne compréhension mécanistique quant au mode de détection ampérométrique évitant ainsi toute confusion à ce sujet et permettant l’optimisation du processus de détection.
------------------------------------------------
ABSTRACT
This thesis describes the development of original and high performance selective electrodes for the analysis of several pharmaceutical compounds.
The introduction describes the pharmaceutical compounds of interest (antimalarial drugs and iodine) and provides an overall understanding of the electrochemical groundwork pertaining to their analysis.
The experimental aspect of the thesis is divided into two parts, each according to the type of electrode and electrochemical technique used for the analysis.
The first part describes the design, characterization, and application of polymer membrane based ion selective potentiometric electrodes. Selectivity was provided by including ion pairs of several antimalarial drugs into the membrane. The feasibility of use of these electrodes in pharmaceutical analysis as well as in dissolution trials is also described in this part.
The second part describes the design of an original silver-modified carbon paste amperometric sensor and compares its performances to those of a plain metallic silver electrode. The electrode has been modified by silver microparticles or by silver nanoparticles. Quantitative iodine determination serves to prove the usefulness of this new sensor in analytical chemistry.
Different aspects, such as the nature of the counter ions (sodium tetraphenylborate and potassium tetrakis (4-chlorophenyl) borate) and the plastifying agents that are likely to influence electrode behaviour have been investigated.
Since the electrodes have been shown to perform well in quantitative analysis, the possibility of use in dissolution trials was explored.
Micronized silver-modified carbon paste electrode (35% Ag m/m) coupled to anionic-exchange liquid chromatography with amperometric detection was shown to be very sensitive with regards to the assay of halogenides in general and iodide in particular. After having investigated the various factors likely to influence chromatographic separation and electrode response, it was shown that the sensor could be used to rapidly and selectively determine low iodide concentrations in complex samples. Cyclic voltammetric analysis provided information concerning the mechanisms allowing amperometric detection, thus allowing an optimisation of the detection procedures.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Schneider, Armin Conrad. "Potentiometrische Bestimmung von Einzelionenaktivitätskoeffizienten wässriger Elektrolyte mit Hilfe ionenselektiver Elektroden / Potentiometric Determination of Single Ion Activity Coefficients of Aqueous Electrolyte Solutions Using Ion Selective Electrodes." Gerhard-Mercator-Universitaet Duisburg, 2005. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-02112005-091206/.
Full textLanger, Matthias. "Protonierungs-, Komplexbildungs- und Verteilungseigenschaften von tripodalen Azaliganden." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1144746562988-21053.
Full textLanger, Matthias. "Protonierungs-, Komplexbildungs- und Verteilungseigenschaften von tripodalen Azaliganden." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24687.
Full textHsu, Yu Chieh, and 許郁婕. "Titanium nitride and potassium ion selective membrane on light-addressable potentiometric sensor for cell activities monitor." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/s3muj8.
Full textBooks on the topic "Ion selective potentiometry"
1923-, James A. M., and ACOL (Project), eds. Potentiometry and ion selective electrodes. Chichester [West Sussex]: Published on behalf of ACOL, Thames Polytechnic, London, by Wiley, 1987.
Find full textEvans, Alun. Potentiometry and ion selective electrodes. Edited by James A. M. 1923- and ACOL. Chichester: Published on behalf of ACOL by Wiley, 1987.
Find full textOehme, Friedrich. Ionenselektive Elektroden: Grundlagen und Methoden der Direkt-Potentiometrie. Heidelberg: A. Hüthig, 1986.
Find full textBook chapters on the topic "Ion selective potentiometry"
Marple, Ronita L., and William R. LaCourse. "Potentiometry: pH and Ion-Selective Electrodes." In Ewing’s Analytical Instrumentation Handbook, Fourth Edition, 491–508. Fourth edition / [edited by] Nelu Grinberg, Sonia Rodriguez. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315118024-16.
Full textAmmann, Daniel. "Potentiometric Measurements of Ion Activities with Neutral Carrier-Based Electrodes." In Ion-Selective Microelectrodes, 65–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-52507-0_5.
Full textBoitieux, Jean-Louis, Gerard Desmet, and Daniel Thomas. "Heterogeneous Potentiometric Enzyme Immunoassay for Antigens and Haptens with Iodide Selective Electrode." In Electrochemical Sensors in Immunological Analysis, 211–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-1974-8_16.
Full textPaderno, Diego, Ileana Bodini, Aldo Zenoni, Antonietta Donzella, Lisa Centofante, and Valerio Villa. "Proof of Concept Experience in the SPES Experiment: First Solutions for Potentiometers Replacement in System Maintenance." In Lecture Notes in Mechanical Engineering, 301–6. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_48.
Full textCsuros, Maria. "Potentiometry and Ion–Selective Electrodes." In Environmental Sampling and Analysis, 153–63. Routledge, 2018. http://dx.doi.org/10.1201/9780203756881-13.
Full text"Potentiometry: pH and Ion-Selective Electrodes." In Analytical Instrumentation Handbook, 535–54. CRC Press, 2004. http://dx.doi.org/10.1201/9780849390395-19.
Full textRadu, Aleksandar, and Dermot Diamond. "Chapter 2 Ion-selective electrodes in trace level analysis of heavy metals: Potentiometry for the XXI century." In Electrochemical Sensor Analysis, 25–52. Elsevier, 2007. http://dx.doi.org/10.1016/s0166-526x(06)49002-4.
Full textAmemiya, Shigeru. "Potentiometric Ion-Selective Electrodes." In Handbook of Electrochemistry, 261–94. Elsevier, 2007. http://dx.doi.org/10.1016/b978-044451958-0.50020-3.
Full textVytřas, K. "Potentiometric Titrations Based on Ion-Pair Formation." In Ion-Selective Electrode Reviews, 77–164. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-08-034150-7.50007-3.
Full textSENDA, MITSUGI, TAKASHI KAKIUCHI, TOSHIHARU NUNO, TOSHIYUKI OSAKAI, and TADAAKI KAKUTANI. "THEORY OF ION-SELECTIVE ELECTRODES, AMPEROMETRIC ISE AND POTENTIOMETRIC ISE." In Ion-Selective Electrodes, 559–68. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-08-037933-3.50040-5.
Full textConference papers on the topic "Ion selective potentiometry"
Filipkowski, Andrzej, Jan Ogrodzki, Leszek J. Opalski, Radoslaw Rybaniec, and Piotr Z. Wieczorek. "Data acquisition system for ion-selective potentiometric sensors." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, edited by Ryszard S. Romaniuk and Krzysztof S. Kulpa. SPIE, 2009. http://dx.doi.org/10.1117/12.838257.
Full textJiang, Hongjie, Wuyang Yu, Jose Fernando Waimin, Nicholas Glassmaker, Nithin Raghunathan, Xiaofan Jiang, Babak Ziaie, and Rahim Rahimi. "Inkjet-printed Solid-state Potentiometric Nitrate Ion Selective Electrodes for Agricultural Application." In 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956650.
Full textSitumorang, Manihar, Primsa Kaban, Rhica Ayulinova, and Wesly Hutabarat. "The Development of Sensitive and Selective Potentiometric Biosensor for Urea Assay." In Proceedings of The 5th Annual International Seminar on Trends in Science and Science Education, AISTSSE 2018, 18-19 October 2018, Medan, Indonesia. EAI, 2019. http://dx.doi.org/10.4108/eai.18-10-2018.2287315.
Full textAlekseev, Pavel N., and Alexander L. Shimkevich. "On Voltage-Sensitive Managing the Redox-Potential of MSR Fuel Composition." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48176.
Full textAlbiol Chiva, Jaume, Juan Peris Vicente, María José Ruiz Ángel, Mar Esteve Amorós, Samuel Carda Broch, Pau Esteve Amorós, Estel la Esteve Amorós, Diego Kassuha, and Josep Esteve Romero. "Implementation of Computer Assisted Experimental Work in Analytical Chemistry Laboratory Teaching." In Fifth International Conference on Higher Education Advances. Valencia: Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/head19.2019.9161.
Full textKhosrowjerdi, Mohammad, and James Aflaki. "Design and Utilization of an Impact Pendulum for Assessing Energy Losses due to the Impact of a Projectile With an Arbitrary Medium." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/cie-21276.
Full textYamamoto, Ikuo, Toshiyuki Kosaka, Hirofumi Nakatsuka, Peter Halswell, Lars Johanning, and Sam Weller. "Development of Strong Mooring Rope With Embedded Electric Cable." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19319.
Full textWeller, S. D., P. Halswell, L. Johanning, T. Kosaka, H. Nakatsuka, and I. Yamamoto. "Tension-Tension Testing of a Novel Mooring Rope Construction." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61915.
Full textTurso, James, Abe Boughner, and Gianfranco Buonamici. "Propulsion Simulator/Stimulator Development for US Navy’s Newest Gas Turbine-Powered Ship: LHD 8 USS Makin Island." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22305.
Full text