Academic literature on the topic 'Ion source'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ion source.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ion source"

1

Dimov, G. I., A. S. Donin, O. Yu Marin, I. I. Morozov, V. Ya Savkin, and S. A. Wiebe. "Deuterium ion source." Review of Scientific Instruments 67, no. 3 (March 1996): 1027–28. http://dx.doi.org/10.1063/1.1146746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gaubert, G., C. Bieth, W. Bougy, N. Brionne, X. Donzel, R. Leroy, A. Sineau, C. Vallerand, A. C. C. Villari, and T. Thuillier. "Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source." Review of Scientific Instruments 83, no. 2 (February 2012): 02A344. http://dx.doi.org/10.1063/1.3673635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orient, O. J., A. Chutjian, and S. H. Alajajian. "Reversal ion source: A new source of negative ion beams." Review of Scientific Instruments 56, no. 1 (January 1985): 69–72. http://dx.doi.org/10.1063/1.1138477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakudo, N. "Microwave ion source for ion implantation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 21, no. 1-4 (January 1987): 168–77. http://dx.doi.org/10.1016/0168-583x(87)90819-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jayamanna, K., F. Ames, Y. Bylinskii, M. Lovera, D. Louie, B. Minato, D. Portilla, and S. Saminathan. "TRIUMF’s H-/D- Ion Source Development to Date." Journal of Physics: Conference Series 2743, no. 1 (May 1, 2024): 012039. http://dx.doi.org/10.1088/1742-6596/2743/1/012039.

Full text
Abstract:
Abstract The TRIUMF Stable Ion Source group has been developing negative and positive ion sources for decades, including a few arc-discharge H-/D- ion sources and a microwave-driven H-/D- ion source for medical cyclotrons [1] and other applications. The smallest ion source with a 125 cc plasma chamber can produce up to 5 mA continuously. The largest ion source with a 1200 cc plasma chamber is able to produce 60 mA with increased arc power and enhanced magnetic confinement. The filament-less microwave ion source is capable of producing up to 5 mA H- current for years without any manual intervention. A historical overview of H-/D- source development at TRIUMF is presented. A summary of employed optical and diagnostics components is also presented
APA, Harvard, Vancouver, ISO, and other styles
6

Bahng, Jungbae, Yuncheol Kim, Young-woo Lee, Jinsung Yu, Seung-Hee Nam, Bong-Hyuk Choi, and Yongbae Jeon. "Multi-filament ion source for uniform ion beam generation." Journal of Physics: Conference Series 2743, no. 1 (May 1, 2024): 012054. http://dx.doi.org/10.1088/1742-6596/2743/1/012054.

Full text
Abstract:
Abstract Ion beams are employed in various fields such as semiconductor manufacturing, surface modification and material science. The uniformity of ion beams is crucial in many applications, but conventional ion sources that use a single filament often limit the uniformity and intensity of the ion beam. This paper presents a study that aims to optimize a multi-filament ion source to enhance the uniformity of ion beams. The study includes a detailed explanation of the ion source components and design, methods for measuring ion beam uniformity with its experimental design, followed by results, analysis, discussions and conclusions, completed by suggestions for future research directions. The experimental results demonstrate that the use of a multi-filament ion source improves ion beam uniformity compared to a single-filament ion source. An optimal design for the ion source components and new approaches for improving ion beam uniformity are described. The study’s results provide important information for improving ion beam uniformity and offer a technical basis for providing high-quality products and services in various industries.
APA, Harvard, Vancouver, ISO, and other styles
7

Arredondo, I., M. Eguiraun, J. Jugo, D. Piso, M. del Campo, T. Poggi, S. Varnasseri, et al. "Adjustable ECR Ion Source Control System: Ion Source Hydrogen Positive Project." IEEE Transactions on Nuclear Science 62, no. 3 (June 2015): 903–10. http://dx.doi.org/10.1109/tns.2015.2432036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Medvedev, V. K. "New type of metal ion source: Surface diffusion Li+ ion source." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 2 (March 1995): 621. http://dx.doi.org/10.1116/1.587927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kürten, A., L. Rondo, S. Ehrhart, and J. Curtius. "Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry." Atmospheric Measurement Techniques Discussions 3, no. 6 (November 19, 2010): 5295–312. http://dx.doi.org/10.5194/amtd-3-5295-2010.

Full text
Abstract:
Abstract. The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS) through the reaction of NO3– ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (Americium 241) ion source which has been used previously. Our results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of one minute it is ~6 × 104 molecules of H2SO4 per cm3. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.
APA, Harvard, Vancouver, ISO, and other styles
10

Kürten, A., L. Rondo, S. Ehrhart, and J. Curtius. "Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry." Atmospheric Measurement Techniques 4, no. 3 (March 3, 2011): 437–43. http://dx.doi.org/10.5194/amt-4-437-2011.

Full text
Abstract:
Abstract. The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS) through the reaction of NO3– ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241) ion source which has been used previously. The results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of 1 min it is ~6 × 104 molecule cm−3 of H2SO4. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ion source"

1

Bozkurt, Bilge. "Dynamic Ion Behavior In Plasma Source Ion Implantation." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607025/index.pdf.

Full text
Abstract:
The aim of this work is to analytically treat the dynamic ion behavior during the evolution of the ion matrix sheath, considering the industrial application plasma source ion implantation for both planar and cylindrical targets, and then to de-velop a code that simulates this dynamic ion behavior numerically. If the sepa-ration between the electrodes in a discharge tube is small, upon the application of a large potential between the electrodes, an ion matrix sheath is formed, which fills the whole inter-electrode space. After a short time, the ion matrix sheath starts moving towards the cathode and disappears there. Two regions are formed as the matrix sheath evolves. The potential profiles of these two regions are derived and the ion flux on the cathode is estimated. Then, by us-ing the finite-differences method, the problem is simulated numerically. It has been seen that the results of both analytical calculations and numerical simula-tions are in a good agreement.
APA, Harvard, Vancouver, ISO, and other styles
2

Epstein, Charles S. "Development of a polarized Helium-3 ion source for RHIC using the electron beam ion source." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84388.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 39-40).
This thesis presents my work on the design and development of a source of polarized Helium-3 ions for the Relativistic Heavy Ion Collider at Brookhaven National Lab, Upton, NY. The 3He atoms will be polarized using the technique of metastability exchange optical pumping (MEOP), and will then be flowed into the newly commissioned Electron Beam Ion Source (EBIS). Fully stripped 3He++ ions will be extracted and their polarizations measured at low energies before acceleration in the RHIC complex.
by Charles Samuel Epstein.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
3

Scrivens, R. M. "Extraction of an ion beam from a laser ion source." Thesis, Swansea University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638785.

Full text
Abstract:
The CERN Laser Ion Source (LIS) aims to provide a short pulse (˜5 μs), high current (˜ 10mA) and high charge state heavy ion beam (Pb25+) for acceleration by a LINAC and injection into the Proton Synchrotron Booster (PSB). The laser beam time profile was measured using detectors with time response of the order of 1 ns. Cross correlating of the laser pulse form and the ion beam current one fails to find any significant relation. The laser spatial profile was measured in the focal plane by a Spiricon pyroelectric camera in conjunction with a long focal length lens. In the Master Oscillator and Power Amplifier laser configuration, the beam was found to be astigmatic and exhibit a large pointing instability. The free-running laser produced a beam in good agreement with the simulation of beam propagation along the 30 m path extension and was also astigmatic. As for the time profile, no firm correlation of the laser spatial profile fluctuation and the ion beam instability could be found. Within the framework of this thesis, a critical study has been performed on whether shot-to-shot instabilities are being caused by fluctuation in the laser beam parameters (time profile, spatial distribution and energy) as well as the extraction of the ions from the expanded laser plasma to form an ion beam. In addition, a technique for the calculation of absolute ion numbers was derived. The extraction of the ions from the laser ion source plasma was experimentally studied using Faraday cup collectors, and a compact single shot emittance measurement system. The extraction of the ions was found to be correctly modelled by the Child-Langmuir equations for charge extraction, with some modification necessary to account for the initial significant ion velocity (˜105 ms-1) found after plasma expansion. The equivalent proton perveance applicable to the extraction geometry used, was found by systemic measurements of the ion transmission to a Faraday cup as a function of the applied source voltage. Absolute ion numbers were calculated from measurements using an electrostatic ion analyser and a Faraday cup ion collector. From these measurements it was possible to deduce the transmission losses through the Low Energy Beam transport line between the LIS and an RFQ; they were found to be as high as 80%. In summary, the measurements detailed here allow the prediction of the source parameters required for extraction of a higher current, higher charge state beam required for a final LIS implementation capable of supplying the ion beam for the Large Hadron Collider (LHC). In addition, simulations of the beam extraction using a time dependent macro-particle and static ray-tracing software package are described which provide a reasonably good modelling of the beam extraction.
APA, Harvard, Vancouver, ISO, and other styles
4

Verzeroli, Elodie. "Source NAPIS et Spectromètre PSI-TOF dans le projet ANDROMEDE." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS221/document.

Full text
Abstract:
Le projet ANDROMEDE a pour but de créer un nouvel instrument d’imagerie ionique sub-micrométrique et d’analyse par spectrométrie de masse, en utilisant l’impact d’ions sur des nano-objets présents à la surface des échantillons solides et plus particulièrement sur les échantillons biologiques. L’étude de ces échantillons avec l’objectif d’analyse in vitro et in vivo nécessite une préparation complexe et requiert une expérimentation à la pression atmosphérique. Cet instrument unique ouvre une nouvelle voie dans l’analyse de surfaces, complémentaire aux méthodes utilisées de nos jours.Au sein du projet ANDROMEDE, deux éléments ont été développés dans le cadre de notre étude. La source NAPIS qui délivre les nanoparticules permettant d’augmenter le rendement d’éjection des ions secondaires, et le spectromètre de masse PSI-TOF pour l’analyse chimique des éléments émis depuis la surface de l’échantillon.Le faisceau primaire de nanoparticules de la source NAPIS est accéléré dans un accélérateur de type Pelletron 4MeV et amené sur une cible. La source de nanoparticules NAPIS a été développée et validée indépendamment au sein de la société ORSAY PHYSICS, avant son couplage sur l’accélérateur.Une nouvelle optique d’extraction appelée ExOTOF ainsi que le spectromètre de masse à extraction orthogonale PSI-TOF ont été développés pour permettre l’analyse des ions secondaires et augmenter la résolution en masse du système. Ces ensembles ont été spécialement dessinés pour ce projet. Ils permettront une extraction et une analyse efficace des ions secondaires émis depuis la surface de l’échantillon en utilisant des faisceaux continus et auront leur application pour les analyses à la pression atmosphérique. L’ensemble a été validé et les premiers tests de sortie du faisceau primaire ont été réalisés avec succès
The goal of the ANDROMEDE project is to create a new instrument for sub-micrometric ion imaging and analysis by mass spectrometry, using ion impacts on nano-objects present in the solid sample surface and more particularly on biological samples. In-vitro and in-vivo analysis of these types of samples require mostly complex preparation and even atmospheric pressure experimentation. This unique instrument opens a new path for surface analysis characterization, which is complementary to the standard methods and technics used today.In the ANDROMEDE project, two elements have been developed in our study. The NAPIS source which delivers the nanoparticles allowing the increase of the secondary ion yield and the PSI-TOF mass spectrometer for the chemical analysis of the elements emitted from the sample surface.The NAPIS source delivers a primary beam of accelerated nanoparticles in a Pelletron 4MeV accelerator which is driven to a target. The NAPIS nanoparticles source has been developed and validated independently in the ORSAY PHYSICS Company firstly before its coupling on the accelerator. The new extraction optics called ExOTOF as well as the PSI-TOF orthogonal extraction mass spectrometer have been developed for the reliable secondary ions study and the increase of the mass resolution.These instruments have been specially designed for this project. This development will allow an efficient extraction and analysis of the secondary ions emitted from the sample surface using continuous primary beams and will have applications for atmospheric pressure studies. The assembly has been completely validated and the first tests of the output beam have been successfully carried out
APA, Harvard, Vancouver, ISO, and other styles
5

Lisfi, Driss. "Contribution a l'etude d'une source d'ions de recul." Caen, 1987. http://www.theses.fr/1987CAEN2029.

Full text
Abstract:
Dans le but de former et de transporter des faisceaux d'ions multicharges avec les ions de recul produits par impact des faisceaux du ganil dans une cible gazeuse, nous avons mesure l'energie cinetique initiale et la dispersion d'energie cinetique initiale des ions de recul d'argon et de neon de charge 9 a 16 et 7 a 9 respectivement et nous les avons trouvees tres faibles (de l'ordre de l'electron-volt). Nous avons de plus realise une source d'ions de basse energie destinee a etudier et a tester au laboratoire les elements d'optique ionique necessaires pour le transport de ces faisceaux
APA, Harvard, Vancouver, ISO, and other styles
6

Khodja, Hicham. "Etude, conception et realisation d'une source d'ions micro-ebit." Paris 6, 1993. http://www.theses.fr/1993PA066133.

Full text
Abstract:
Les sources d'ions multicharges de type ebis fonctionnant a l'heure actuelle font toutes appel aux techniques cryogeniques pour des raisons de pompage et de compression magnetique; les couts de fabrication et d'utilisation sont par consequent relativement eleves. Il existe neanmoins un domaine ou les sources de type ebis peuvent se passer des techniques cryogeniques, celui des faibles facteurs de compression et forts courants. Dans cette optique, une source baptisee micro-ebit, derivee d'un klystron amplificateur, a ete concue et realisee afin de verifier s'il est possible de produire des ions multicharges avec les parameres definis ci-dessus. Cette source ne dispose pas de systeme d'extraction; les ions sont detectes in situ par l'intermediaire des rayons x emis lors de leurs interactions avec le faisceau electronique. Apres un inventaire des sources ebis et ebit fonctionnant dans le monde, nous decrivons la physique et la technologie de ce type de source, dont le principe de fonctionnement repose sur l'ionisation pas-a-pas d'ions pieges par la charge d'espace du faisceau electronique. Dans une seconde partie, nous decrivons le dispositif micro-ebit, de sa conception aux premiers essais de transport de faisceau. Les performances prevues de la source par des simulations numeriques et des essais de vide sont precisees: densite de courant de l'ordre de 100 a/cm#2 pour un faisceau de 1 ampere-10 kev se propageant dans un vide de l'ordre de 1. 10##1#0 mbar, temps de confinement de 1 seconde pour produire de l'argon heliumoide. La derniere partie est consacree aux resultats experimentaux qui sont analyses apres description des diagnostics aux rayons x qui ont ete employes. La source micro-ebit a permis de produire divers ions, dont de l'argon 16+, avec le temps de confinement prevu
APA, Harvard, Vancouver, ISO, and other styles
7

Johnson, Samantha. "Optimizing the ion source for polarized protons." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&amp.

Full text
Abstract:
Beams of polarized protons play an important part in the study of the spin dependence of the nuclear force by measuring the analyzing power in nuclear reactions. The source at iThemba LABS produces a beam of polarized protons that is pre-accelerated by an injector cyclotron (SPC2) to a energy of 8 MeV before acceleration by the main separated-sector cyclotron to 200 MeV for physics research. The polarized ion source is one of the two external ion sources of SPC2. Inside the ion source hydrogen molecules are dissociated into atoms in the dissociator and cooled to a temperature of approximately 30 K in the nozzle. The atoms are polarized by a pair of sextupole magnets and the nucleus is polarized by RF transitions between hyperfine levels in hydrogen atoms. The atoms are then ionized by electrons in the ionizer. The source has various sensitive devices, which influence beam intensity and polarization. Nitrogen gas is used to prevent recombination of atoms after dissociation. The amount of nitrogen and the temperature at which it is used plays a very important role in optimizing the beam current. The number of electrons released in the ionizer is influenced by the size and shape of the filament. Optimization of the source will ensure that beams of better quality (a better current and stability) are produced.
APA, Harvard, Vancouver, ISO, and other styles
8

Mefo, Jane Ebelechukwu. "Langmuir probe characterisation of ion source plasmas." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/843557/.

Full text
Abstract:
The precise conditions under which ions are generated in the ion source can have a major impact on how well the source performs, and how much of the extracted beam current can be transported. Because of the commercial focus on the repeatability and reliability of the overall ion implantation process, this vital aspect of the machine has received little scientific attention. hi order to address this issue, detailed studies of both the source and beam plasmas have been initiated. The research described in this thesis, was concerned with the former, and the characterisation of boron trifluoride (BF3) and argon plasmas created in a commercial indirectly heated cathode high current ion source, is described. Boron is still the main p-type dopant in the ion implantation industry but little information is available to date on the basic plasma parameters and the way in which they depend on the source operating conditions. Of major interest in the BF3 plasma is the cracking efficiency (gas and surface-phase phenomena may also be important), since the desired ion species is the singly charged atomic boron ion. Plasma parameters such as the density, electron and ion temperature, and the related plasma potential, dictate the nature of the processes occurring, and their rates. Detailed information on how the plasma parameters are affected by the source operating conditions (discharge "arc" voltage, discharge current, gas flow rate and confining magnetic field strength) was obtained from Langmuir probe measurements. In conjunction with the known performance of the source in field machines, the data have enabled the plasma parameters to be related to the overall system performance. Two electron temperatures were observed and significant spatial non-uniformities were apparent. The dependence of electron temperature on different operating conditions was found to be different, and source geometry and arc chamber material were also found to have an effect on the electron temperature.
APA, Harvard, Vancouver, ISO, and other styles
9

Ghalambor, Dezfuli Abdol Mohammad. "Characteristics of a laser desorption ion source." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60065.

Full text
Abstract:
The characteristics of a pulsed laser ion source have been studied. A pulse from a heating laser (Nd: YAG laser) desorbs the neutral atoms from the surface of a metal target and then a second pulse or pulses from excimer or dye lasers selectively ionize the desorbed neutrals using the Resonance Ionization Spectroscopy technique. Time-of-flight and electrostatic energy analyzer measurements have been used to study different characteristics of this ion source such as spatial, velocity, and energy distributions. These measurements reveal that although the energy spread of the basic source is relatively high, (FWHM $ sim$ 37 eV) the use of a pulsed acceleration system can reduce this spread by a factor of 5 (to about 7 eV), making the source suitable for collinear laser spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Tae Ik. "Lithium ion source for satellite charge control." Thesis, Monterey, California: Naval Postgraduate School, 1990. http://hdl.handle.net/10945/34832.

Full text
Abstract:
Approved for public release; distribution unlimited.
A lithium ion source using thermal emission from mineral beta- eucryptite has been investigated as a possible control device for spacecraft charging. This source can be used for control of positively charged spacecraft potentials in sunlight and differentially charged spacecraft surfaces in shadow. This thesis investigates the dependence of the emitted ion current on several parameters: source temperature (power input), source bias potentials and potentials applied to simulated spacecraft geometries. Saturation current of about 5.8 micro amp were measured at an extraction potentials of 100 Volts from a source of 0.317 cm2 surface area with a power input of 18 Watts. The lifetime due to ion exhaustion was found to be approximately 200 hours for this compact source. Our results indicate that this type of ion source may represent an effective charge control device for spacecraft.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ion source"

1

Corp, Commonwealth Scientific, ed. Twelve centimeter inductive RF ion source: Collimated graphite optilin ion optics manual. Alexandria, Va: Commonwealth Scientific Corporation, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

E, Moore T., and United States. National Aeronautics and Space Administration., eds. The thermal ion dynamics experiment and plasma source instrument. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. National Aeronautics and Space Administration., ed. Stigmatically focusing partial pressure analyzer with dual chamber ion source. Washington, DC: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Melvin, Michael Edward. Design and evaluation of ion source for satellite charge control. Monterey, Calif: Naval Postgraduate School, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stangeby, P. C. Monte Carlo modelling of impurity ion transport for a limiter source/sink. [S.l.]: [s.n.], 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Commonwealth Scientific Corporation (Alexandria, Va.). Mark I Gridless Ion Source: Guide to operations : supplement for Mark I controller. Alexandria, Va: Commonwealth Scientific Corporation, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marriott, Philip. Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source. Salford: University of Salford, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Budd George, and AWWA Research Foundation, eds. Evaluation of MIEX: Process impacts on different source waters. Denver, CO: Awwa Research Foundation, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aker, Sherri. Differential probing of the acceptance of a quadrupole mass spectrometer using an articulated ion source. [Toronto, Ont,]: Department of Aerospace Science and Engineering, University of Toronto, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aker, Sherri. Differential probing of the acceptance of a quadrupole mass spectrometer using an articulated ion source. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ion source"

1

Hopman, H. J., and R. M. A. Heeren. "Negative Ion Source Technology." In Plasma Technology, 185–201. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3400-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Day Goodacre, Thomas. "The VADLIS Ion Source." In Applied Laser Spectroscopy for Nuclear Physics, 49–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73889-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jayamanna, K. "Off line ion source terminal." In ISAC and ARIEL: The TRIUMF Radioactive Beam Facilities and the Scientific Program, 51–62. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7963-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Faircloth, Dan. "Ion Source Engineering and Technology." In Physics and Applications of Hydrogen Negative Ion Sources, 465–512. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21476-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Van Berkel, Gary J., and Vilmos Kertesz. "Electrochemistry of the Electrospray Ion Source." In Electrospray and MALDI Mass Spectrometry, 75–122. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9780470588901.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yates, John T. "Solid State Cesium Ion Gun Source." In Experimental Innovations in Surface Science, 672–77. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2304-7_199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Petzold, G., P. Siebert, and J. Müller. "A Micromachined Electron Beam Ion Source." In Micro Total Analysis Systems 2000, 171–74. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2264-3_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prime, E. J., J. Lassen, T. Achtzehn, D. Albers, P. Bricault, T. Cocolios, M. Dombsky, et al. "TRIUMF resonant ionization laser ion source." In LASER 2006, 127–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71113-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fukumasa, Osamu, and Setsuya Ohashi. "Numerical Simulation on Tandem Negative Ion Source." In Nonequilibrium Processes in Partially Ionized Gases, 505–15. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3780-9_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siekmann, H. R., Ch Lüder, J. Faehrmann, H. O. Lutz, and K. H. Meiwes-Broer. "The pulsed arc cluster ion source (PACIS)." In Small Particles and Inorganic Clusters, 867–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_209.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ion source"

1

Faehl, R. J., and B. P. Wood. "PIC modelling of plasma source ion implantation using metal ion sources." In International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.533487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Douglas J., Joy A. Warner, and Nelson LeBarron. "Uniformity Model for Energetic Ion Processes Using a Kaufman Ion Source." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.ma.3.

Full text
Abstract:
Processes that use energetic ions for large substrates require that the time-averaged erosion effects from the ion flux be uniform across the surface. A numerical model has been developed to determine this flux and its effects on surface etching of a silica/photoresist combination. The geometry of the source and substrate is very similar to a typical deposition geometry with single or planetary substrate rotation. The model was used to tune an inert ion-etching process that used single or multiple Kaufman sources1 to less than 3% uniformity over a 30-cm aperture after etching 8 μm of material. The same model can be used to predict uniformity for ion-assisted deposition (IAD).
APA, Harvard, Vancouver, ISO, and other styles
3

Arredondo, I., M. Eguiraun, J. Jugo, D. Piso, M. del Campo, T. Poggi, S. Varnasseri, et al. "Adjustable ECR ion source control system: Ion Source Hydrogen Positive project." In 2014 IEEE-NPSS Real Time Conference (RT). IEEE, 2014. http://dx.doi.org/10.1109/rtc.2014.7097477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grzebyk, Tomasz, Piotr Szyszka, Michal Krysztof, Anna Gorecka-Drzazga, and Jan A. Dziuban. "MEMS ion source for ion mobility spectrometry." In 2018 31st International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2018. http://dx.doi.org/10.1109/ivnc.2018.8520270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Y., K. N. Leung, M. D. Williams, W. H. Bruenger, W. Fallmann, H. Loschner, and G. Stengl. "Multicusp ion source for ion projection lithography." In Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366). IEEE, 1999. http://dx.doi.org/10.1109/pac.1999.792782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belchenko, Yu I., A. I. Gorbovsky, A. A. Ivanov, S. G. Konstantinov, A. L. Sanin, I. V. Shikhovtsev, and M. A. Tiunov. "Multiaperture negative ion source." In THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012). AIP, 2013. http://dx.doi.org/10.1063/1.4792783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hatanaka, K., K. Takahisa, and H. Tamura. "The RCNP ion source." In The seventh international workshop on polarized gas targets and polarized beams. AIP, 1998. http://dx.doi.org/10.1063/1.55005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alonso, Jose R. "Ion source requirements for pulsed spallation neutron sources." In Joint meeting of the seventh international symposium on the production and neutralization of negative ions and beams and the sixth European workshop on the production and applicaton of light negative ions. AIP, 1996. http://dx.doi.org/10.1063/1.51268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morton, Dale E., and Vitaly Fridman. "Dense moisture stable titania and silica ion assisted deposited films deposited using a compact cold cathode ion source." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.ma.6.

Full text
Abstract:
Considerable data has been published on the benefits of ion assisted deposition (IAD) (1,2,3). The cold cathode ion source is a relatively mature device but has generally been regarded as having limited utility in applications requiring large area, uniform ion beams or improving the oxidation of reactive processes and increasing the refractive index of deposited films. A majority of the thin film community did not regard the early versions of the cold cathode ion source as equivalents to the Kaufinan gridded ion sources, end-Hall ion sources, Advanced Plasma Source (APS) or Reactive Low Voltage Ion Plating in producing high-index, moisture stable films.
APA, Harvard, Vancouver, ISO, and other styles
10

Cluggish, B. P., S. A. Galkin, and J. S. Kim. "Modeling Ion extraction from an ECR Ion source." In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440911.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ion source"

1

Billquist, P. J., R. Harkewicz, and R. C. Pardo. ECR ion source. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, I. G., J. E. Galvin, R. A. MacGill, and R. T. Wright. Miniature high current metal ion source. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5215408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herrmann, M., and G. F. Bertsch. Source dimensions in ultrarelativistic heavy ion collisions. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10156355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kapica, Jonathan G. Studies in ion source development for application in heavy ion fusion. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/830001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, X., Q. Ji, A. Chang, and K. N. Leung. Mini RF-driven ion source for focused ion beam system. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/802041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takeuchi, T., M. Okamura, A. Zelenski, and C. Levy. Ion Optics Calculation of Polarized H- Ion Source for RHIC. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1149859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Donaghy, J. J., W. K. Dagenhart, K. L. Kannan, P. M. Ryan, W. L. Stirling, and C. C. Tsai. Emittance of the ORNL negative ion source. Office of Scientific and Technical Information (OSTI), November 1987. http://dx.doi.org/10.2172/5577292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anders, Andre, Georgy Yu Yushkov, and David A. Baldwin. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/981525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burke, J. T., S. J. Freedman, C. M. Lyneis, and D. Wutte. Ion source for radioactive isotopes - IRIS ECR. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/821748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, D. J., J. A. Warner, and N. LeBarron. Uniformity model for energetic ion processes using a Kaufman ion source. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/677197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography