Academic literature on the topic 'Ionospheric electron density – Africa'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ionospheric electron density – Africa.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ionospheric electron density – Africa"

1

Yao, Y. B., P. Chen, S. Zhang, and J. J. Chen. "Temporal and spatial variations in ionospheric electron density profiles over South Africa during strong magnetic storms." Natural Hazards and Earth System Sciences 13, no. 2 (2013): 375–84. http://dx.doi.org/10.5194/nhess-13-375-2013.

Full text
Abstract:
Abstract. Observations from the South African TrigNet global navigation satellite system (GNSS) and vertical total electron content (VTEC) data from the Jason-1 satellite were used to analyze the variations in ionospheric electron density profiles over South Africa before and after the severe geomagnetic storms on 15 May 2005. Computerized ionospheric tomography (CIT) was used to inverse the 3-D structure of ionospheric electron density and its response to the magnetic storms. Inversion results showed that electron density significantly increased at 10:00 UT, 15 May compared with that at the same period on 14 May. Positive ionospheric storms were observed in the inversion region during the magnetic storms. Jason-1 data show that the VTEC observed on descending orbits on 15 May significantly increased, whereas that on ascending orbits only minimally changed. This finding is identical to the CIT result.
APA, Harvard, Vancouver, ISO, and other styles
2

Sibanda, P., and L. A. McKinnell. "Topside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: possibilities for South Africa." Annales Geophysicae 29, no. 2 (2011): 229–36. http://dx.doi.org/10.5194/angeo-29-229-2011.

Full text
Abstract:
Abstract. Successful empirical modeling of the topside ionosphere relies on the availability of good quality measured data. The Alouette, ISIS and Intercosmos-19 satellite missions provided large amounts of topside sounder data, but with limited coverage of relevant geophysical conditions (e.g., geographic location, diurnal, seasonal and solar activity) by each individual mission. Recently, methods for inferring the electron density distribution in the topside ionosphere from Global Positioning System (GPS)-based total electron content (TEC) measurements have been developed. This study is focused on the modeling efforts in South Africa and presents the implementation of a technique for reconstructing the topside ionospheric electron density (Ne) using a combination of GPS-TEC and ionosonde measurements and empirically obtained Upper Transition Height (UTH). The technique produces reasonable profiles as determined by the global models already in operation. With the added advantage that the constructed profiles are tied to reliable measured GPS-TEC and the empirically determined upper transition height, the technique offers a higher level of confidence in the resulting Ne profiles.
APA, Harvard, Vancouver, ISO, and other styles
3

Altadill, David, Antoni Segarra, Estefania Blanch, et al. "A method for real-time identification and tracking of traveling ionospheric disturbances using ionosonde data: first results." Journal of Space Weather and Space Climate 10 (2020): 2. http://dx.doi.org/10.1051/swsc/2019042.

Full text
Abstract:
Traveling Ionospheric Disturbances (TIDs) are wave-like propagating irregularities that alter the electron density environment and play an important role spreading radio signals propagating through the ionosphere. A method combining spectral analysis and cross-correlation is applied to time series of ionospheric characteristics (i.e., MUF(3000)F2 or foF2) using data of the networks of ionosondes in Europe and South Africa to estimate the period, amplitude, velocity and direction of propagation of TIDs. The method is verified using synthetic data and is validated through comparison of TID detection results made with independent observational techniques. The method provides near real time capability of detection and tracking of Large-Scale TIDs (LSTIDs), usually associated with auroral activity.
APA, Harvard, Vancouver, ISO, and other styles
4

Imtiaz, Nadia, Waqar Younas, and Majid Khan. "Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017." Annales Geophysicae 38, no. 2 (2020): 359–72. http://dx.doi.org/10.5194/angeo-38-359-2020.

Full text
Abstract:
Abstract. We study the impact of the geomagnetic storm of 7–9 September 2017 on the low- to mid-latitude ionosphere. The prominent feature of this solar event is the sequential occurrence of two SYM-H minima with values of −146 and −115 nT on 8 September at 01:08 and 13:56 UT, respectively. The study is based on the analysis of data from the Global Positioning System (GPS) stations and magnetic observatories located at different longitudinal sectors corresponding to the Pacific, Asia, Africa and the Americas during the period 4–14 September 2017. The GPS data are used to derive the global, regional and vertical total electron content (vTEC) in the four selected regions. It is observed that the storm-time response of the vTEC over the Asian and Pacific sectors is earlier than over the African and American sectors. Magnetic observatory data are used to illustrate the variation in the magnetic field particularly, in its horizontal component. The global thermospheric neutral density ratio; i.e., O∕N2 maps obtained from the Global UltraViolet Spectrographic Imager (GUVI) on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to characterize the storm-time response of the thermosphere. These maps exhibit a significant storm-time depletion of the O∕N2 density ratio in the northern middle and lower latitudes over the western Pacific and American sectors as compared to the eastern Pacific, Asian and African sectors. However, the positive storm effects in the O∕N2 ratio can be observed in the low latitudes and equatorial regions. It can be deduced that the storm-time thermospheric and ionospheric responses are correlated. Overall, the positive ionospheric storm effects appear over the dayside sectors which are associated with the ionospheric electric fields and the traveling atmospheric disturbances. It is inferred that a variety of space weather phenomena such as the coronal mass ejection, the high-speed solar wind stream and the solar radio flux are the cause of multiple day enhancements of the vTEC in the low- to mid-latitude ionosphere during the period 4–14 September 2017.
APA, Harvard, Vancouver, ISO, and other styles
5

Drabo, Kadidia Nonlo, Emmanuel Nanema, Jean Louis Zerbo, and Frederic Ouattara. "Electron Bulk Surface Density Variability in Ionosphere during Quiet Days at Low Latitudes." Applied Physics Research 11, no. 5 (2019): 21. http://dx.doi.org/10.5539/apr.v11n5p21.

Full text
Abstract:
This work deals with electron surface density time variation in ionosphere region. The study uses international reference ionosphere (IRI) model for investigation. Total Electron Content (TEC) parameter is carried out at different levels in the F2-layer of ionosphere. The study takes place at Ouagadougou station (12,4°N and 358,5°E), in West Africa. Quiet time periods of solar cycle 22 are considered. This study considers only the maximum and minimum phases of solar cycle 22. The five quietest days of the characteristic months in each season are used in the study. Seasonal time profiles of ionosphere parameters highlight relation between Total Electron Content (TEC) and Height of F2-layer (hmF2) in ionosphere region. The results found in this study correlate closely with parameters behavior previously found in other works.
APA, Harvard, Vancouver, ISO, and other styles
6

Adebesin, B. O., A. B. Rabiu, O. K. Obrou, and J. O. Adeniyi. "Ionospheric Peak Electron Density and Performance Evaluation of IRI-CCIR Near Magnetic Equator in Africa During Two Extreme Solar Activities." Space Weather 16, no. 3 (2018): 230–44. http://dx.doi.org/10.1002/2017sw001729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ouattara, Frédéric, Doua Allain Gnabahou, and Christine Amory Mazaudier. "Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations." International Journal of Geophysics 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/640463.

Full text
Abstract:
We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar) during three solar cycles (from cycle 20 to cycle 22), that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz). The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.
APA, Harvard, Vancouver, ISO, and other styles
8

Savas, Caner, and Fabio Dovis. "The Impact of Different Kernel Functions on the Performance of Scintillation Detection Based on Support Vector Machines." Sensors 19, no. 23 (2019): 5219. http://dx.doi.org/10.3390/s19235219.

Full text
Abstract:
Scintillation caused by the electron density irregularities in the ionospheric plasma leads to rapid fluctuations in the amplitude and phase of the Global Navigation Satellite Systems (GNSS) signals. Ionospheric scintillation severely degrades the performance of the GNSS receiver in the signal acquisition, tracking, and positioning. By utilizing the GNSS signals, detecting and monitoring the scintillation effects to decrease the effect of the disturbing signals have gained importance, and machine learning-based algorithms have been started to be applied for the detection. In this paper, the performance of Support Vector Machines (SVM) for scintillation detection is discussed. The effect of the different kernel functions, namely, linear, Gaussian, and polynomial, on the performance of the SVM algorithm is analyzed. Performance is statistically assessed in terms of probabilities of detection and false alarm of the scintillation event. Real GNSS signals that are affected by significant phase and amplitude scintillation effect, collected at the South African Antarctic research base SANAE IV and Hanoi, Vietnam have been used in this study. This paper questions how to select a suitable kernel function by analyzing the data preparation, cross-validation, and experimental test stages of the SVM-based process for scintillation detection. It has been observed that the overall accuracy of fine Gaussian SVM outperforms the linear, which has the lowest complexity and running time. Moreover, the third-order polynomial kernel provides improved performance compared to linear, coarse, and medium Gaussian kernel SVMs, but it comes with a cost of increased complexity and running time.
APA, Harvard, Vancouver, ISO, and other styles
9

Radicella, S. M., and J. O. Adeniyi. "Equatorial ionospheric electron density below theF2peak." Radio Science 34, no. 5 (1999): 1153–63. http://dx.doi.org/10.1029/1999rs900071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chakenov, Bakhitzhan Dj. "TID, electron density and ionospheric sounding." Journal of Atmospheric and Terrestrial Physics 56, no. 11 (1994): 1447–49. http://dx.doi.org/10.1016/0021-9169(94)90110-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ionospheric electron density – Africa"

1

Ssessanga, Nicholas. "Development of an ionospheric map for Africa." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1011498.

Full text
Abstract:
This thesis presents research pertaining to the development of an African Ionospheric Map (AIM). An ionospheric map is a computer program that is able to display spatial and temporal representations of ionospheric parameters such as, electron density and critical plasma frequencies, for every geographical location on the map. The purpose of this development was to make the most optimum use of all available data sources, namely ionosondes, satellites and models, and to implement error minimisation techniques in order to obtain the best result at any given location on the African continent. The focus was placed on the accurate estimation of three upper atmosphere parameters which are important for radio communications: critical frequency of the F2 layer (foF2), Total Electron Content (TEC) and the maximum usable frequency over a distance of 3000 km (M3000F2). The results show that AIM provided a more accurate estimation of the three parameters than the internationally recognised and recommended ionosphere model (IRI-2012) when used on its own. Therefore, the AIM is a more accurate solution than single independent data sources for applications requiring ionospheric mapping over the African continent.
APA, Harvard, Vancouver, ISO, and other styles
2

Okoh, Daniel Izuikeninachi. "Developing an ionospheric map for South Africa." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1005244.

Full text
Abstract:
This thesis describes the development of an ionospheric map for the South African region using the current available resources. The International Reference Ionosphere (IRI) model, the South African Bottomside Ionospheric Model (SABIM), and measurements from ionosondes in the South African Ionosonde Network, were incorporated into the map. An accurate ionospheric map depicting the foF2 and hmF2 parameters as well as electron density profiles at any location within South Africa is a useful tool for, amongst others, High Frequency (HF) communicators and space weather centers. A major product of the work is software, written in MATLAB, which produces spatial and temporal representations of the South African ionosphere. The map was validated and demonstrated for practical application, since a significant aim of the project was to make the map as applicable as possible. It is hoped that the map will find immense application in HF radio communication industries, research industries, aviation industries, and other industries that make use of Earth-Space systems. A potential user of the map is GrinTek Ewation (GEW) who is currently evaluating it for their purposes
APA, Harvard, Vancouver, ISO, and other styles
3

Sibanda, Patrick. "Challenges in topside ionospheric modelling over South Africa." Thesis, Rhodes University, 2010. http://hdl.handle.net/10962/d1005238.

Full text
Abstract:
This thesis creates a basic framework and provides the information necessary to create a more accurate description of the topside ionosphere in terms of the altitude variation of the electron density (Ne) over the South African region. The detailed overview of various topside ionospheric modelling techniques, with specific emphasis on their implications for the efforts to model the South African topside, provides a starting point towards achieving the goals. The novelty of the thesis lies in the investigation of the applicabilityof three different techniques to model the South African topside ionosphere: (1) The possibility of using Artificial Neural Network (ANN) techniques for empirical modelling of the topside ionosphere based on the available, however irregularly sampled, topside sounder measurements. The goal of this model was to test the ability of ANN techniques to capture the complex relationships between the various ionospheric variables using irregularly distributed measurements. While this technique is promising, the method did not show significant improvement over the International Reference Ionosphere (IRI) model results when compared with the actual measurements. (2) Application of the diffusive equilibrium theory. Although based on sound physics foundations, the method only operates on a generalised level leading to results that are not necessarily unique. Furthermore, the approach relies on many ionospheric variables as inputs which are derived from other models whose accuracy is not verified. (3) Attempts to complement the standard functional techniques, (Chapman, Epstein, Exponential and Parabolic), with Global Positioning System (GPS) and ionosonde measurements in an effort to provide deeper insights into the actual conditions within the ionosphere. The vertical Ne distribution is reconstructed by linking together the different aspects of the constituent ions and their transition height by considering how they influence the shape of the profile. While this approach has not been tested against actual measurements, results show that the method could be potentially useful for topside ionospheric studies. Due to the limitations of each technique reviewed, this thesis observes that the employment of an approach that incorporates both theoretical onsiderations and empirical aspects has the potential to lead to a more accurate characterisation of the topside ionospheric behaviour, and resulting in improved models in terms of reliability and forecasting ability. The point is made that a topside sounder mission for South Africa would provide the required measured topside ionospheric data and answer the many science questions that this region poses as well as solving a number of the limitations set out in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Moeketsi, Daniel Mojalefa. "Solar cycle effects on GNSS-derived ionospheric total electron content observed over Southern Africa." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005275.

Full text
Abstract:
The South African Global Navigation Satellite System (GNSS) network of dual frequency receivers provide an opportunity to investigate solar cycle effects on ionospheric Total Electron Content (TEC) over the South Africa region by taking advantage of the dispersive nature of the ionospheric medium. For this task, the global University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) was adopted, modified and applied to compute TEC using data from the southern African GNSS Network. TEC values were compared with CODE International GNSS services TEC predictions and Ionosonde-derived TEC (ITEC) measurements to test and validate the UNB-IMT results over South Africa. It was found that the variation trends of GTEC and ITEC over all stations are in good agreement and show pronounced seasonal variations with high TEC values around equinoxes for a year near solar maximum and less pronounced around solar minimum. Signature TEC depletions and enhanced spikes were prevalently evident around equinoxes, particularly for a year near solar maximum. These observations were investigated and further discussed with an analysis of the midday Disturbance Storm Time (DST) index of geomagnetic activity. The residual GTEC – ITEC corresponding to plasmaspheric electron content and equivalent ionospheric foF2 and total slab thickness parameters were computed and comprehensively discussed. The results verified the use of UNB-IMT as one of the tools for ionospheric research over South Africa. The UNB-IMT algorithm was applied to investigate TEC variability during different epochs of solar cycle 23. The results were investigated and further discussed by analyzing the GOES 8 and 10 satellites X-ray flux (0.1 – 0.8 nm) and SOHO Solar Extreme Ultraviolet Monitor higher resolution data. Comparison of UNB-IMT TEC derived from collocated HRAO and HARB GNSS receivers was undertaken for the solar X17 and X9 flare events, which occurred on day 301, 2003 and day 339, 2006. It was found that there exist considerable TEC differences between the two collocated receivers with some evidence of solar cycle dependence. Furthermore, the daytime UNB TEC compared with the International Reference Ionosphere 2001 predicted TEC found both models to show a good agreement. The UNB-IMT TEC was further applied to investigate the capabilities of geodetic Very Long Baseline Interferometry (VLBI) derived TEC using the Vienna TEC Model for space weather monitoring over HartRAO during the CONT02 and CONT05 campaigns conducted during the years 2002 (near solar maximum) and 005 (near solar minimum). The results verified the use of geodetic VLBI as one of the possible instruments for monitoring space weather impacts on the ionosphere over South Africa.
APA, Harvard, Vancouver, ISO, and other styles
5

Jacobs, Linda. "An investigation into improved ionospheric F1 layer predictions over Grahamstown, South Africa." Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1008094.

Full text
Abstract:
This thesis describes an analysis of the F1 layer data obtained from the Grahamstown (33.32°S, 26.500 E), South Africa ionospheric station and the use of this data in improving a Neural Network (NN) based model of the F1 layer of the ionosphere. An application for real-time ray tracing through the South African ionosphere was identified, and for this application real-time evaluation of the electron density profile is essential. Raw real-time virtual height data are provided by a Lowell Digisonde (DPS), which employs the automatic scaling software, ARTIST whose output includes the virtual-toreal height data conversion. Experience has shown that there are times when the ray tracing performance is degraded because of difficulties surrounding the real-time characterization of the F1 region by ARTIST. Therefore available DPS data from the archives of the Grahamstown station were re-scaled manually in order to establish the extent of the problem and the times and conditions under which most inaccuracies occur. The re-scaled data were used to update the F1 contribution of an existing NN based ionospheric model, the LAM model, which predicts the values of the parameters required to produce an electron density profile. This thesis describes the development of three separate NNs required to predict the ionospheric characteristics and coefficients that are required to describe the F1 layer profile. Inputs to the NNs include day number, hour and measures of solar and magnetic activity. Outputs include the value of the critical frequency of the F1 layer, foF1, the real height of reflection at the peak, hmFl, as well as information on the state of the F1 layer. All data from the Grahamstown station from 1973 to 2003 was used to train these NNs. Tests show that the predictive ability of the LAM model has been improved by incorporating the re-scaled data.
APA, Harvard, Vancouver, ISO, and other styles
6

McKinnell, L. A. "A neural network based ionospheric model for the bottomside electron density profile over Grahamstown, South Africa." Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1005262.

Full text
Abstract:
This thesis describes the development and application of a neural network based ionospheric model for the bottomside electron density profile over Grahamstown, South Africa. All available ionospheric data from the archives of the Grahamstown (33.32ºS, 26.50ºE) ionospheric station were used for training neural networks (NNs) to predict the parameters required to produce the final profile. Inputs to the model, called the LAM model, are day number, hour, and measures of solar and magnetic activity. The output is a mathematical description of the bottomside electron density profile for that particular input set. The two main ionospheric layers, the E and F layers, are predicted separately and then combined at the final stage. For each layer, NNs have been trained to predict the individual ionospheric characteristics and coefficients that were required to describe the layer profile. NNs were also applied to the task of determining the hours between which an E layer is measurable by a groundbased ionosonde and the probability of the existence of an F1 layer. The F1 probability NN is innovative in that it provides information on the existence of the F1 layer as well as the probability of that layer being in a L-condition state - the state where an F1 layer is present on an ionogram but it is not possible to record any F1 parameters. In the event of an L-condition state being predicted as probable, an L algorithm has been designed to alter the shape of the profile to reflect this state. A smoothing algorithm has been implemented to remove discontinuities at the F1-F2 boundary and ensure that the profile represents realistic ionospheric behaviour in the F1 region. Tests show that the LAM model is more successful at predicting Grahamstown electron density profiles for a particular set of inputs than the International Reference Ionosphere (IRI). It is anticipated that the LAM model will be used as a tool in the pin-pointing of hostile HF transmitters, known as single-site location.
APA, Harvard, Vancouver, ISO, and other styles
7

Giday, Nigussie Mezgebe. "Optimizing MIDAS III over South Africa." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1011277.

Full text
Abstract:
In this thesis an ionospheric tomographic algorithm called Multi-Instrument Data Anal- ysis System (MIDAS) is used to reconstruct electron density profiles using the Global Positioning System (GPS) data recorded from 53 GPS receivers over the South African region. MIDAS, developed by the Invert group at the University of Bath in the UK, is an inversion algorithm that produces a time dependent 3D image of the electron density of the ionosphere. GPS receivers record the time delay and phase advance of the trans- ionospheric GPS signals that traverse through the ionosphere from which the ionospheric parameter called Total Electron Content (TEC) can be computed. TEC, the line integral of the electron density along the satellite-receiver signal path, is ingested by ionospheric tomographic algorithms such as MIDAS to produce a time dependent 3D electron density profile. In order to validate electron density profiles from MIDAS, MIDAS derived NmF2 values were compared with ionosonde derived NmF2 values extracted from their respective 1D electron density profiles at 15 minute intervals for all four South African ionosonde stations (Grahamstown, Hermanus, Louisvale, and Madimbo). MIDAS 2D images of the electron density showed good diurnal and seasonal patterns; where a comparison of the 2D images at 12h00 UT for all the validation days exhibited maximum electron concentration during the autumn and summer and a minimum during the winter. A root mean square error (rmse) value as small as 0.88x 10¹¹[el=m³] was calculated for the Louisvale ionosonde station during the winter season and a maximum rmse value of 1.92x 10¹¹[el=m³] was ob- tained during the autumn season. The r² values were the least during the autumn and relatively large during summer and winter; similarly the rmse values were found to be a maximum during the autumn and a minimum during the winter indicating that MIDAS performs better during the winter than during the autumn and spring seasons. It is also observed that MIDAS performs better at Louisvale and Madimbo than at Grahamstown and Hermanus. In conclusion, the MIDAS reconstruction has showed good agreement with the ionosonde measurements; therefore, MIDAS can be considered a useful tool to study the ionosphere over the South African region.
APA, Harvard, Vancouver, ISO, and other styles
8

Aragón, Àngel Angela. "Contributions to ionospheric electron density retrieval." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77897.

Full text
Abstract:
La transformada de Abel es una técnica de inversión usada frecuentemente en radio ocultaciones (RO) que, en el contexto ionosférico, permite deducir densidades electrónicas a partir de datos de STEC (Slant Total Electron Content) derivados a partir de observaciones de la fase portadora. Esta técnica está basada en medidas precisas en doble frecuencia de fase portadora ( banda L) de un receptor GPS a bordo de un satélite de órbita baja (Low Earth Orbit -LEO-) rastreando un satélite GPS detrás del limbo de la tierra. Al combinar tales medidas con la información de posiciones y velocidades de los satélites GPS y LEO, es posible deducir el cambio en el camino de la señal debido a la presencia de la atmósfera y, consecuentemene, convertirlo en ángulos de curvatura (bending angles). A partir de ellos, información sobre el índice de refracción vertical puede ser obtenida a través de técnicas de inversión, y transformarlo en perfiles verticales de densidad electrónica y/o perfiles de atmósfera neutra. Una de las hipótesis básicas de la inversión clásica es suponer que el campo de densidades electrónicas tiene simetría esférica en la vecindad de una ocultación. Sin embargo, a la práctica, la huella de una ocultación generalmente cubre regiones de miles de km que puede presentar variabilidad ionosférica importante; por lo cuál, la hipótesis de simetría esférica no puede ser garantizada. De hecho, las inhomogeneidades de la densidad electrónica en la dirección veritcal para una ocultación dada son una de las principales causas de error cuando se usa la inversión de Abel inversion. Para corregir el error debido a la hipótesis de simetría esférica, se introduce el concepto de separabilidad. Ello implica que la densidad electrónica puede ser expresada como una combinación de datos de Vertical Total Electron Content (VTEC) derivados externamente, los cuales asumen la dependencia horizontal de la densidad, y una función de forma, que a su vez asume la dependencia en altura que es común a todas las observaciones para una ocultación dada. Nótese que el espesor de capa permanece constante cerca de la región de la ocultación debido a la hipótesis de separabilidad en vez de la densidad, como ocurriría en el caso de usar simetría esférica. Esta técnica fue aplicada exitosamente a la combinación lineal de fases de GPS L1 y L2, , LI= L1-2, la cuál proporcionar un observable libre de geometría que depende sólo del retraso ionosférico, la ambigüedad de fase, biases instrumentales y wind-up. Los resultados presentaban una mejora del 40% en RMS al comparar frecuencias del pico de la capa F2 con datos de ionosonda respecto la inversión clásica de Abel. Sin embargo, la potencial influencia de la diferencia de caminos ópticos entre L1 y L2 fue despreciada. Esta tesis doctoral muestra que ello no es un problema para la inversión a alturas ionosféricas. Una alternativa para la inversión de perfiles que evita esta desventaja es usar la curvatura de la señal como dato principal. La implementación de la separabilidad para ángulos de curvatura no es inmediata y ha sido uno de los objetivos de esta tesis. En este sentido, el principio de la separabilidad ha sido aplicado a los ángulos de curvatura de L1 en vez de la la combinación LI como en trabajos anteriores. Además, trabajando con ángulos de curvatura, la separabilidad puede ser también trasladada a la obtención de perfiles troposféricos. Varias aproximaciones para obtener la contribución de las partes altas de la ionosfera han sido también estudiadas, aparte del hecho de simplemente prescindir de esta contribución. Se ha usado un modelo climatológico, una extrapolación exponencial y el hecho de considerar las implicaciones de usar separabilidad. También se ha propuesto una manera para obtener funciones de mapeo (mapping functions) deducidas a partir de perfiles RO. Sin embargo, trabajando sólo con datos derivados únicamente de RO, se está sistematicamente despreciando la contribución de la protonosfera al TEC. Con la propuesta inicial de función de mapeo sólo la contribución ionosférica es tenida en cuenta. La solución ideal para aplicaciones de datos de tierra GNSS sería usar un modelo de dos capas, una para modelar la ionosfera y otra para la protonosfera, o alternativamente, si se quisiera alta resolución tomográfica, combinar observaciones RO y con elevación positiva de LEOs con datos de tierra. Se ha probado que modelando con dos capas, los resultados que se habían obtenido con el análisis de datos RO han podido ser validados. La conclusión más importante es que la proporción entre la contribución ionosférica y protonosférica es el parámetro que explica la localización de las alturas efectivas.<br>La transformada d’Abel és una tècnica emprada freqüentment en radio ocultacions (RO) que, en el context ionosfèric, permet deduir densitats electròniques a partir de dades de STEC (Slant Total Electron Content) derivats a partir d’observacions de la fase portadora. Aquesta tècnica està basada en mesures precises en doble freqüència de fase portadora (banda L) d’un receptor GPS a bord d’un satèl·lit d’òrbita baixa (Low Earth Orbit-LEO-) rastrejant un satèl·lit GPS darrere del limb de la terra. En combinar les dites mesures amb la informació de posicions i velocitats dels satèl·lits GPS i LEO, és possible deduir el canvi en el camí del senyal degut a la presència de l’atmosfera i, conseqüentment, convertir-lo en angles de curvatura (bending angles). A partir d’ells, informació sobre l’índex de refracció vertical pot ser obtinguda mitjançant tècniques d’inversió i transformar-lo en perfils verticals de densitat electrònica i/o perfils d’atmosfera neutra. Una de les hipòtesis bàsiques de la inversió clàssica és suposar que el camp de densitats electròniques té simetria esfèrica en el veïnatge d’una ocultació. Tanmateix, a la pràctica, la petjada d’una ocultació generalment cobreix regions de milers de quilòmetres que pot presentar variabilitat ionosfèrica important; per la qual cosa, la hipòtesi de simetria esfèrica no pot ser garantida. De fet, les inhomogeneitats de la densitat electrònica en la direcció vertical per a una ocultació donada són una de les principals causes d’error quan es fa servir la inversió d’Abel. Per a corregir l’error a causa de la hipòtesi de simetria esfèrica, s’introdueix el concepte de separabilitat. Això implica que la densitat electrònica pot ser expressada com una combinació de dades de Vertical Total Electron Content (VTEC) derivats externament, els quals assumeixen la dependència horitzontal de la densitat, i una funció de forma, la qual alhora assumeix la dependència en altura que és comuna a totes les observacions per a una ocultació donada. Cal notar que l’espessor de capa roman constant a prop de la regió de l’ocultació a causa de la hipòtesi de separabilitat en comptes de la densitat, tal i com succeiria en el cas de fer servir simetria esfèrica. Aquesta tècnica fou aplicada amb èxit a la combinació lineal de fases de GPS L1 i L2, LI=L1-2, la qual proporciona un observable lliure de geometria que depèn només del retard ionosfèric, l’ambigüitat de fase, biases instrumentals i wind-up. Els resultats presenten una millora del 40% en RMS en comparar freqüències del pic de la capa F2 amb dades de ionosonda respecte la inversió clàssica d’Abel. No obstant, la potencial influència de la diferència de camins òptics entre L1 i L2 fou menyspreada. Aquesta tesi doctoral mostra que això no és pas un problema per a la inversió a altures ionosfèriques. Una alternativa per a la inversió de perfils que evita aquesta desavantatge és emprar la curvatura del senyal com a dada principal. La implementació de la separabilitat per a angles de curvatura no és immediata i ha estat un dels objectius d’aquesta tesi. En aquest sentit, el principi de la separabilitat ha esta aplicat als angles de curvatura de L1 en comptes de la combinació LI com en treballs anterior. A més, treballant amb angles de curvatura, la separabilitat pot ser també traslladada a l’obtenció de perfils troposfèrics. Varies aproximacions per a obtenir la contribució de les parts altes de la ionosfera han estat també estudiades, apart del fet de prescindir simplement d’aquesta contribució. S’ha fet servir un model climatològic, una extrapolació exponencial i el fet de considera les implicacions d’usar separabilitat. També s’ha proposat una manera pera obtenir funcions de mapeo (mapping functions) deduïdes a partir de perfils RO. Tanmateix, treballant només amb dades derivades únicament de RO, s’està menyspreant sistemàticament la contribució de la protonosfera al TEC. Amb la proposta inicial de funció de mapeo només tenim en compte la contribució ionosfèrica. La solució ideal per a aplicacions de dades de terra GNSS seria fer servir un model de dues capes, una per a modelar la ionosfera i una altra per la protonosfera, o alternativament, si es volgués alta resolució tomogràfica, combinar observacions RO i amb elevació positiva de LEOs amb dades de terra. S’ha provat que modelant amb dues capes, els resultats obtinguts amb l’anàlisi de dades RO han pogut estar validats. La conclusió més important és que la proporció entre la contribució ionosfèrica i protonosfèrica és el paràmetre que explica la localització de les altures efectives.<br>The Abel transform is a frequently used radio occultation (RO) inversion technique which, in the ionospheric context, allows retrieving electron densities as a function of height from STEC (Slant Total Electron Content) measurements derived from carrier phase observations. The GPS RO technique is based on precise carrier dual-frequency phase measurements (L-band) of a GPS receiver onboard a Low Earth Orbit satellite (LEO) tracking a rising or setting GPS satellite behind the limb of the earth. When combining such measurements with the information from the positions and velocities of GPS and LEO satellites, it is possible to derive the phase path change due to the atmosphere during an occultation event which subsequently can be converted into bending angles. From these, information about the vertical refraction index can be obtained by means of inversion techniques, which can then be converted into ionospheric vertical electron density profiles and/or neutral atmospheric profiles. One of the basic assumptions in the classical approach is to assume the spherical symmetry of the electron density field in the vicinity of an occultation. However, in practice, the footprint of an occultation generally covers wide regions of thousands of kilometres in length that may show significant ionospheric variability; therefore this hypothesis cannot be guaranteed. Indeed, inhomogeneous electron density in the horizontal direction for a given occultation is believed to be one of the main sources of error when using the Abel inversion. In order to correct the error due to the spherical symmetry assumption, the separability concept is introduced and applied. This implies that the electron density can be expressed by a combination of externally derived Vertical Total Electron Content (VTEC) data, which assumes the horizontal dependency, and a shape function, which in turn assumes the height dependency that is common to all the observations for a given occultation. Note that the slab thickness remains constant near the occultation due to the separability hypothesis instead of the density as is the case of the spherical symmetry. This technique was successfully applied to the linear combination of the GPS carrier phases L1 and L2, , LI= L1-2 which is a geometric free observable that depends only on the ionospheric delay, phase ambiguity, instrumental bias and wind-up. The result was an improvement of about 40% in RMS when comparing frequencies of the F2 layer peak with ionosonde data and the classical Abel inversion. The main advantage of such developed technique is its simple computation. Nevertheless, the potential influence of the different signal paths between L1 and L2 was neglected. Regarding this aspect, this Ph.D. dissertation shows that is not a problem for inversion at ionospheric heights. An alternative to inverting the profile, which overcomes this disadvantage, is to use the bending angle of the signal as the main input data. The implementation of separability when using the bending angle is not immediate and was, actually, one of the goals of this thesis. In this sense, the separability approach has been applied to measured L1 bending angle, instead of LI combination as reported in previous work. Additionally, this approach could also be translated to tropospheric profile retrievals. Several approaches to account for the upper ionospheric contribution have been also tackled, apart from the fact of neglecting such contribution: a climatological model, an exponential extrapolation and condisering the nature of the separability concept. it has been proposed a way to obtain mapping functions derived from RO profiles. Such mapping functions can be easily derived from usual ionospheric parameters. For the contribution of this part of the ionosphere, it has been shown that it is capable to account for the total electron content (TEC). However, by working solely with RO derived data, we are systematically neglecting the contribution of the protonosphere to the total electron content. With the initial proposed mapping function based on the analysis of effective heights derived from RO, only the ionospheric contribution is accounted for. The ideal solution for ground-based GNSS data applications would be to use a two-layer model, one to model the ionosphere and another one for the protonosphere, or alternatively, if we are looking for high tomographic resolution, to combine RO and topside LEO observations with ground data. It has been shown that by modelling in such way, the results that were obtained with RO data analysis can be validated. The most important conclusion is that the ratio between ionospheric and protonospheric contribution is the driver for the location of the effective heights.
APA, Harvard, Vancouver, ISO, and other styles
9

Van, Velthoven P. J. F. "Medium scale irregularities in the ionospheric electron content." Utrecht : Drukkerij Elinkwijk, 1990. http://catalog.hathitrust.org/api/volumes/oclc/22643184.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kocabas, Zeynep. "Forecasting Of Ionospheric Electron Density Trough For Characterization Of Aerospace Medium." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610445/index.pdf.

Full text
Abstract:
Modeling the ionosphere, where the effects of solar dynamo becomes more effective to space based and ground borne activities, has an undeniable importance for telecommunication and navigation purposes. Mid-latitude electron density trough is an interesting phenomenon in characterizing the behavior of the ionosphere, especially during disturbed conditions. Modeling the mid-latitude electron density trough is a very popular research subject which has been studied by several researchers until now. In this work, an operational technique has been developed for a probabilistic space weather forecast using fuzzy modeling and computer based detection of trough in two steps. First step is to detect the appropriate geomagnetical conditions for trough formation, depending on the values of 3-h planetary K index (Kp), magnetic season, latitude and local time, by using fuzzy modeling technique. Once the suitable geomagnetic conditions are detected, second step is to find the lower latitude position (LLP) and minimum position (MP) of the observed trough being two main identifiers of the mid-latitude electron density trough. A number of case studies were performed on ARIEL 4 satellite data, composed of different geomagnetic, annual and diurnal characteristics. The results obtained from fuzzy modeling show that the model is able to detect the appropriate conditions for trough occurrence and the trough shape was effectively identified for each selected case by using the predefined descriptions of mid-latitude electron density trough. The overall results are observed to be promising.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ionospheric electron density – Africa"

1

Rich, Frederick J. Plasma densities and irregularities at 830 km altitude based on observations during 1979. Space Physics Division, Air Force Geophysics Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rich, Frederick J. Plasma densities and irregularities at 830 km altitude based on observations during 1979. Space Physics Division, Air Force Geophysics Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kirill, Boyarchuk, ed. Ionospheric precursors of earthquakes. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Memarzadeh, Y. Ionospheric modeling for precise GNSS applications. Nederlandse Commissie voor Geodesie = Netherlands Geodetic Commission, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spalla, P. Atlante del contenuto elettronico totale della ionosfera nell'area mediterranea. Consiglio nazionale delle ricerche, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pulinets, Sergey, and Kyrill Boyarchuk. Ionospheric Precursors of Earthquakes. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

A, Troshichev O., Gosudarstvennyĭ komitet SSSR po gidrometeorologii i kontroli͡u︡ prirodnoĭ sredy., and Arkticheskiĭ i antarkticheskiĭ nauchno-issledovatelʹskiĭ institut (Saint Petersburg, Russia), eds. Ionosferno-magnitnye vozmushchenii͡a︡ v vysokikh shirotakh. Gidrometeoizdat, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

V, Plotkin V., and Institut geologii i geofiziki (Akademii͡a︡ nauk SSSR), eds. Katalog profileĭ ėlektronnoĭ kont͡s︡entrat͡s︡ii oblasti D ionosfery. Akademii͡a︡ nauk SSSR, Sibirskoe otd-nie, In-t geologii i geofiziki, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

E, Daniell R., and U.S. Air Force Geophysics Laboratory. Ionospheric Physics Division., eds. Determination of ionospheric electron density profiles from satellite UV emission measurements, FY 84. Ionospheric Physics Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

E, Daniell R., and U.S. Air Force Geophysics Laboratory. Ionospheric Physics Division, eds. Determination of ionospheric electron density profiles from satellite UV emission measurements, FY 84. Ionospheric Physics Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ionospheric electron density – Africa"

1

Tsidu, Gizaw Mengistu, Gebreab Kidanu, and Gebregiorgis Abraha. "Tomographic Reconstruction of Ionospheric Electron Density Using Altitude-Dependent Regularization Strength over the Eastern Africa Longitude Sector." In Ionospheric Space Weather. John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118929216.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ngwira, Chigomezyo M., and Anthea J. Coster. "Global Ionospheric Electron Density Disturbances During the Initial Phase of a Geomagnetic Storm on 5 April 2010." In Ionospheric Space Weather. John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118929216.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huffman, Robert E. "Ionospheric Electron Density." In International Geophysics. Elsevier, 1992. http://dx.doi.org/10.1016/s0074-6142(08)60361-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panicciari, Tommaso, Nathan D. Smith, Federico Da Dalt, Cathryn N. Mitchell, and Gary S. Bust. "Multiresolution Tomography of Ionospheric Electron Density." In Mitigation of Ionospheric Threats to GNSS: an Appraisal of the Scientific and Technological Outputs of the TRANSMIT Project. InTech, 2014. http://dx.doi.org/10.5772/58772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Calabia, Andres, and Shuanggen Jin. "Characterization of the Upper Atmosphere from Neutral and Electron Density Observations." In International Association of Geodesy Symposia. Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/1345_2020_123.

Full text
Abstract:
Abstract Upper-atmospheric processes under different space weather conditions are still not well understood, and the existing models are far away from the desired operational requirements due to the lack of in-situ measurements input. The ionospheric perturbation of electromagnetic signals affects the accuracy and reliability of Global Navigation Satellite Systems (GNSS), satellite communication infrastructures, and Earth observation techniques. Furthermore, the variable aerodynamic drag, due to variable thermospheric mass density, disturbs orbital tracking, collision analysis, and re-entry calculations of Low Earth Orbit (LEO) objects, including manned and unmanned artificial satellites. In this paper, we use the Principal Component Analysis (PCA) technique to study and compare the main driver-response relationships and spatial patterns of total electron content (TEC) estimates from 2003 to 2018, and total mass density (TMD) estimates at 475 km altitude from 2003 to 2015. Comparison of the first TEC and TMD PCA mode shows a very similar response to solar flux, but annual cycle shown by TEC is approximately one order of magnitude larger. A clear hemispheric asymmetry is shown in the global distribution of TMD, with higher values in the southern hemisphere than in the northern hemisphere. The hemispheric asymmetry is not visible in TEC. The persistent processes including a favorable solar wind input and particle precipitation over the southern magnetic dip may produce a higher thermospheric heating, which results in the hemispheric asymmetry in TMD.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ionospheric electron density – Africa"

1

Dymond, K. F., P. A. Bernhardt, C. Rocken, and S. Syndergaard. "Ionospheric Electron Density Measurements using Cosmic." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4346311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huba, J. D., and G. Ganguli. "Electron Density Fluctuations In A Disturbed Ionospheric Environment." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Robert A. Fisher. SPIE, 1988. http://dx.doi.org/10.1117/12.943870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Junhai, and Shuanggen Jin. "Second-order ionospheric effects on ionospheric electron density estimation from GPS Radio Occultation." In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7730027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Xiaojian, Oussama Dhifallah, Hassan Mansour, Petros T. Boufounos, and Philip V. Orlik. "Robust 3D Tomographic Imaging of the Ionospheric Electron Density." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9324189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yong-Min Lee, Jin-Ho Jo, Moon-Hee You, and Cheol-Oh Jeong. "Ionospheric electron density profiles derived from obliquely sounded HF radar." In 2014 20th International Conference on Microwaves, Radar, and Wireless Communications (MIKON). IEEE, 2014. http://dx.doi.org/10.1109/mikon.2014.6900018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huba, J. D., and G. Ganguli. "Small Scale Electron Density Fluctuations In A Disturbed Ionospheric Environment." In OE/LASE '89, edited by Robert A. Fisher and LeRoy E. Wilson. SPIE, 1989. http://dx.doi.org/10.1117/12.951749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Decker, Dwight T., Robert E. Daniell, Jr., John R. Jasperse, and Douglas J. Strickland. "Determination of Ionospheric Electron Density Profiles From Satellite UV Emission Measurements." In 30th Annual Technical Symposium, edited by Robert E. Huffman. SPIE, 1986. http://dx.doi.org/10.1117/12.936545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yadav, Sneha, R. K. Choudhary, P. R. Shreedevi, and Surendra Sunda. "On the nighttime enhancement in ionospheric electron density over the equatorial region." In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). IEEE, 2019. http://dx.doi.org/10.23919/ursiap-rasc.2019.8738394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

McMahon, Erin, Joseph Comberiate, Larry Paxton, and Michael Kelly. "3-D Ionospheric Electron Density Reconstructions and Radio Propagation Modeling Using DMSP/SSUSI." In 1st AIAA Atmospheric and Space Environments Conference. American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-3639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Feng, Manyi, and Yuhua Zou. "Zonal Variation Features of Low-Latitude Ionospheric Electron Density Observed by Swarm Constellation." In 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). IEEE, 2018. http://dx.doi.org/10.1109/isape.2018.8634141.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ionospheric electron density – Africa"

1

Liou, Yuei-An. Retrieving Ionospheric Electron Density Distribution with COSMIC Occultations. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada629193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gray, A. L., and K. E. Mattar. Influence of Ionospheric Electron Density Fluctuations on Satellite Radar Interferometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liou, Yuei-An. Retrieving Ionospheric Electron Density Distribution With COSMIC Occultations: An Analysis of the Effects of Geometric and Mathematical Delays on TEC Inversions From GPS/MET Occultation Data. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada627499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography