Academic literature on the topic 'IPSC-derived neurons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IPSC-derived neurons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "IPSC-derived neurons"

1

Zambon, Federico. "Studying α-Synuclein pathology using iPSC-derived dopaminergic neurons". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:2856dcf3-0f38-4a37-9242-8c685d1c2c3a.

Full text
Abstract:
Parkinson's disease (PD) is characterised by the loss of dopaminergic neurons in the Substantia Nigra pars compacta in the midbrain and the presence of intracellular aggregates, known as Lewy bodies (LBs), in the surviving neurons. The aetiology of PD is unknown but a causative role for α-Synuclein (SNCA) has been proposed. Although the function of αSyn is not well understood, a number of pathological mechanisms associated with αSyn toxicity have been proposed. In this study, nine induced pluripotent stem cells (iPSCs) lines from healthy individuals and PD patients carrying t
APA, Harvard, Vancouver, ISO, and other styles
2

Booth, Heather D. E. "Modelling and analysis of LRRK2 mutations in iPSC-derived dopaminergic neurons and astrocytes." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:d85d164e-e9d4-4911-8aa0-831d4519a5a2.

Full text
Abstract:
Parkinson's disease (PD) is a common neurodegenerative disorder, characterised by preferential loss of ventral midbrain dopaminergic (vmDA) neurons in the substantia nigra pars compacta (SNc). The majority of PD cases have unknown aetiology; however, between 5-10% arise due to known genetic mutations, the most common of which are found in the LRRK2 gene. LRRK2 is expressed in neurons and glia in the human brain; therefore, cell-autonomous and/or non-cell autonomous effects may participate in LRRK2-mutation-mediated degeneration of vmDA neurons. This study set out to understand the effects of L
APA, Harvard, Vancouver, ISO, and other styles
3

Samata, Bumpei. "Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Landucci, Elisa. "Modeling Rett syndrome with iPSCs-derived neurons." Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1051069.

Full text
Abstract:
Rett syndrome is a severe neurodevelopmental disorder. The condition affects approximately one in every 10.000 females and is only rarely seen in males. Causative mutations in the transcriptional regulator MeCP2 have been identified in more than 95% of classic Rett patients; mutations in CDKL5 are responsible for the early onset seizures Rett variant and mutations in FOXG1 gene lead to the congenital Rett variant. To shed light on molecular mechanisms underlying Rett syndrome onset and progression in disease-relevant cells, we took advantage of the breakthrough genetic reprogramming technology
APA, Harvard, Vancouver, ISO, and other styles
5

Srikanth, Priya. "Schizophrenia-Relevant DISC1 Interruption Alters Wnt Signaling and Cell Fate in Human iPSC-Derived Neurons." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845068.

Full text
Abstract:
The advent of human induced pluripotent stem cell (iPSC) technology has allowed for unprecedented investigation into the pathophysiology of human neurological and psychiatric diseases. Use of human iPSC-derived neural cells to study disease is complicated by the genetic heterogeneity of cell lines and diversity of differentiation protocols. Here, I address issues surrounding neuropsychiatric disease modeling with human iPSCs. Dozens of published protocols exist to differentiate iPSCs into forebrain neuronal cultures. Among the factors that distinguish these methods are: use of small molecules
APA, Harvard, Vancouver, ISO, and other styles
6

Grunwald, Lena-Marie [Verfasser], and Hans-Georg [Akademischer Betreuer] Rammensee. "iPSC-derived cortical neurons from patients with schizophrenia exhibit changes in early neuronal development / Lena-Marie Grunwald ; Betreuer: Hans-Georg Rammensee." Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/120091614X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klaus, Johannes [Verfasser], and Magdalena [Akademischer Betreuer] Götz. "Modeling neuronal heterotopias using iPSC derived neural stem cells, neurons and cerebral organoids derived from patients with mutations in FAT4 and DCHS1 / Johannes Klaus ; Betreuer: Magdalena Götz." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1148275789/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mosaku, Olukunbi Eniola. "The use of the CRISPR-Cas9 system and iPSC-derived neurons with a SNCA mutation to model neurodegeneration." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10062570/.

Full text
Abstract:
Parkinson's disease (PD) is characterised by the selective loss of dopaminergic neurons of the substantia nigra pars compacta. Patients suffer from a progressive motor disorder, defined by the presence of rigidity, resting tremor and bradykinesia. Current treatment options, relieve symptoms for a limited period, but are not curative, as the underlying molecular causes of neurodegeneration are unknown. Several causative PD mutations have been identified and could provide insight into the defective molecular pathways in PD. Multiplication or missense mutation of the SNCA gene leads to autosomal
APA, Harvard, Vancouver, ISO, and other styles
9

MUTTI, VERONICA. "IPSC-derived neurons and astrocytes: a novel patient-specific model to study the pre-degenerative molecular alteration in Parkinson's Disease." Doctoral thesis, Università degli studi di Brescia, 2021. http://hdl.handle.net/11379/544657.

Full text
Abstract:
IPSC-derived neurons and astrocytes: a novel patient-specific model to study the pre-degenerative molecular alteration in Parkinson's Disease<br>IPSC-derived neurons and astrocytes: a novel patient-specific model to study the pre-degenerative molecular alteration in Parkinson's Disease
APA, Harvard, Vancouver, ISO, and other styles
10

Beevers, Joel Edward. "Investigating the function of microtubule-associated protein tau (MAPT) and its genetic association with Parkinson's using human iPSC-derived dopamine neurons." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:7a94919a-73a1-4a9f-b04d-cdf5b9c64be7.

Full text
Abstract:
Parkinson's disease (PD) primarily manifests as loss of motor control through the degeneration of nigrostriatal dopaminergic neurons. The microtubule-associated protein tau (MAPT) locus is highly genetically associated with PD, wherein the H1 haplotype confers disease risk and the H2 haplotype is protective. As this haplotype variation does not alter the amino acid sequence, disease risk may be conferred by altered gene expression, either of total MAPT or of specific isoforms, of which there are six in adult human brain. To investigate haplotype-specific control of MAPT expression in the neuro
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!