Desgué, Eva. "Control of structural and electrical properties of bilayer to multilayer PtSe₂ films grown by molecular beam epitaxy for high-performance optoelectronic devices." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP170.
Abstract:
Le PtSe₂ est un matériau 2D de la famille des dichalcogénures de métaux de transition (TMDs) qui présente des propriétés intrinsèques exceptionnelles : mobilité des porteurs de charge élevée (200 - 450 cm².(V.s)⁻¹), gap électronique ajustable en fonction du nombre de monocouches (MLs), absorption optique large bande et excellente stabilité à l'air. Ces propriétés sont idéales pour des applications (opto)électroniques. Cependant, la croissance de PtSe₂ de haute qualité cristalline sur un substrat à bas coût et isolant reste un enjeu majeur. Ici, la synthèse de PtSe₂ bicouche à multicouche (< 20 MLs) par épitaxie par jets moléculaires (MBE) est optimisée sur un substrat de saphir. Les caractérisations systématiques comprennent la diffraction électronique (RHEED), la spectroscopie Raman, la spectroscopie de rayons X à dispersion d'énergie (EDS) et des mesures électriques de conductivité. Pour les films épais de PtSe₂ semi-métallique, on démontre que des températures élevées de croissance (520 °C) et de recuit (690 °C), ainsi qu'un fort flux de sélénium (Ф(Se) = 0,5 Å.s⁻¹ ; Ф(Se)/Ф(Pt) ~ 170), permettent d'obtenir une haute qualité cristalline et une haute conductivité électrique. L'impact du recuit post-croissance sur les propriétés structurelles des films épais est particulièrement étudié par diffraction des rayons X (XRD) et microscopie électronique à transmission (STEM). Les films de PtSe₂ non recuits consistent en une distribution 3D de domaines superposés ayant différentes orientations dans le plan, tandis que les films recuits consistent en un réseau 2D de domaines monocristallins selon l'axe c. En d'autres termes, les films non recuits ont des domaines d'épaisseur plus faible que celle du film et sont constitués de phases semi-conductrices et semi-métalliques, entraînant une faible conductivité (0,5 mS). Au contraire, les films recuits sont composés uniquement de domaines quasi-monocristallins et semi-métalliques, et présentent une très haute conductivité, jusqu'à 1,6 mS. On montre également que l'indicateur de qualité cristalline couramment utilisé, qui est la largeur à mi-hauteur (FWHM) du pic Raman Eg, n'est valide que s'il est étudié conjointement avec la FWHM du pic Raman A1g. On démontre que plus la FWHM des pics Eg et A1g est faible, plus la qualité cristalline des films de PtSe₂ dans le plan et hors du plan, respectivement, est élevée, et plus la conductivité électrique augmente. Concernant les films bicouches de PtSe₂ semi-conducteur, on obtient des films de haute qualité cristalline, dont la FWHM des pics Eg et A1g est comparable à celle des cristaux exfoliés, en effectuant une synthèse avec un flux périodique de Pt (periodic supply epitaxy). Les films de PtSe₂ bicouches à multicouches ne sont pas monocristallins mais présentent une texture de fibre selon l'axe c, ce qui est typique sur un substrat de saphir. On démontre pour la première fois l'épitaxie d'un film épais de PtSe₂ sur des surfaces vicinales (marches) de saphir. Pour finir, nous avons fabriqué des dispositifs optoélectroniques fonctionnant à 1,55 µm, la longueur d'onde typique des télécommunications par fibre optique. Ils sont à base de PtSe₂ épais semi-métallique, présentant une haute conductivité électrique et une bonne absorption optique à 1,55 µm, qui est directement synthétisé sur un substrat de saphir 2 pouces. On montre des photodétecteurs à base de PtSe₂ avec une largeur de bande record de 60 GHz et le premier mélangeur optoélectronique à base d'un TMD présentant, de plus, une largeur de bande supérieure à 30 GHz<br>PtSe₂ is a 2D material from the transition metal dichalcogenide (TMD) family that exhibits outstanding intrinsic properties: high charge carrier mobility (200 - 450 cm².(V.s)⁻¹), tunable bandgap with the number of monolayers (MLs), broadband optical absorption and excellent air stability. These properties are ideally suited for (opto)electronic applications. However, the growth of high crystalline quality PtSe₂ on low-cost and insulating substrates remains a major challenge. Here, the synthesis of bilayer to multilayer PtSe₂ films (< 20 MLs) by molecular beam epitaxy (MBE) is optimized on a sapphire substrate. The systematic characterizations include electron diffraction (RHEED), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX) and electrical conductivity measurements. For thick semimetallic PtSe₂ films, we demonstrate that high growth (520°C) and annealing (690°C) temperatures, combined with a high selenium flux (Ф(Se) = 0.5 Å.s⁻¹; Ф(Se)/Ф(Pt) ~ 170), leads to high crystalline quality and high electrical conductivity. In particular, the effect of the post-growth annealing on the structural properties of the thick films is investigated using X-ray diffraction (XRD) and transmission electron microscopy (STEM). We show that non-annealed PtSe₂ films consist of a 3D random distribution of superimposed domains with different in-plane orientations, while the annealed films consist of a 2D network of single-crystalline domains along the c-axis. In other words, non-annealed films have domains with a thickness smaller than that of the film and are composed of both semiconducting and semimetallic phases, resulting in low electrical conductivity (0.5 mS). In contrast, the annealed films are composed solely of quasi-single-crystalline and semimetallic domains, and exhibit high conductivity, up to 1.6 mS. We also show that the commonly used crystalline quality indicator, which is the full width at half maximum (FWHM) of the Eg Raman peak, becomes a reliable metric only when it is studied in conjunction with the FWHM of the A1g Raman peak. We demonstrate that the lower the FWHM of both the Eg and A1g peaks, the higher the crystalline quality of the in-plane and out-of-plane PtSe₂ films, respectively, and the higher the electrical conductivity. For semiconducting PtSe₂ bilayer films, high crystalline quality films with Eg and A1g FWHM values comparable to those of exfoliated crystals are obtained using a periodic Pt flux (periodic supply epitaxy). The bilayer to multilayer PtSe₂ films are not monocrystalline but present a fiber texture along the c-axis, which is typical on a sapphire substrate. The epitaxy of a thick PtSe₂ film on vicinal sapphire surfaces (steps) is demonstrated for the first time. Finally, we fabricated optoelectronic devices operating at 1.55 µm, the typical wavelength of optical fiber telecommunications. They are based on thick semi-metallic PtSe₂, exhibiting high electrical conductivity and good optical absorption at 1.55 µm, which is directly synthesized on a 2-inch sapphire substrate. We demonstrate PtSe₂-based photodetectors with a record bandwidth of 60 GHz and the first TMD-based optoelectronic mixer with, in addition, a bandwidth larger than 30 GHz