Journal articles on the topic 'Iridoid synthase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Iridoid synthase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Aničić, Neda, and Danijela Mišić. "Unveiling the evolution of iridoid biosynthesis in the genus Nepeta: a mini review." Biologia Serbica 46, no. 1 (2024): 100–108. https://doi.org/10.5281/zenodo.13925848.
Full textKries, Hajo, Franziska Kellner, Mohamed Omar Kamileen, and Sarah E. O'Connor. "Inverted stereocontrol of iridoid synthase in snapdragon." Journal of Biological Chemistry 292, no. 35 (2017): 14659–67. http://dx.doi.org/10.1074/jbc.m117.800979.
Full textDuan, Hongying, Wenxiao Liu, Yunpeng Zeng, Wenjing Jia, Huihui Wang, and Yanqing Zhou. "Expression analysis of key enzymes involved in the accumulation of iridoid in Rehmannia glutinosa." Plant Omics, no. 12(02):2019 (September 20, 2019): 102–8. http://dx.doi.org/10.21475/poj.12.02.19.p2221.
Full textKang, Ji-Nam, Jong-Won Han, So-Hee Yang, and Si-Myung Lee. "Co-Expression Analysis Reveals Differential Expression of Homologous Genes Associated with Specific Terpenoid Biosynthesis in Rehmannia glutinosa." Genes 13, no. 6 (2022): 1092. http://dx.doi.org/10.3390/genes13061092.
Full textSalim, Vonny, Brent Wiens, Sayaka Masada-Atsumi, Fang Yu, and Vincenzo De Luca. "7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis." Phytochemistry 101 (May 31, 2014): 23–31. https://doi.org/10.1016/j.phytochem.2014.02.009.
Full textSchmidt, Karin, Jan Petersen, Jennifer Munkert та ін. "PRISEs (progesterone 5β-reductase and/or iridoid synthase-like 1,4-enone reductases): Catalytic and substrate promiscuity allows for realization of multiple pathways in plant metabolism". Phytochemistry 156 (31 грудня 2018): 9–19. https://doi.org/10.1016/j.phytochem.2018.08.012.
Full textSandholu, Anandsukeerthi, Jayati Sengupta, and Kiran Kulkarni. "Structural basis of iridoid synthase-mediated cyclization of 10-oxogeranial." Acta Crystallographica Section A Foundations and Advances 73, a2 (2017): C270. http://dx.doi.org/10.1107/s2053273317093032.
Full textXiang, Beibei, Xiaoxue Li, Yan Wang, et al. "Cloning and Characterization of Two Iridoid Synthase Homologs from Swertia Mussotii." Molecules 22, no. 8 (2017): 1387. http://dx.doi.org/10.3390/molecules22081387.
Full textMunkert, Jennifer, Jacob Pollier, Karel Miettinen та ін. "Iridoid Synthase Activity Is Common among the Plant Progesterone 5β-Reductase Family". Molecular Plant 8, № 1 (2015): 136–52. http://dx.doi.org/10.1016/j.molp.2014.11.005.
Full textKlein, Jan, Elisa Horn, Mona Ernst та ін. "RNAi-mediated gene knockdown of progesterone 5β-reductases in Digitalis lanata reduces 5β-cardenolide content". Plant Cell Reports 40, № 9 (2021): 1631–46. http://dx.doi.org/10.1007/s00299-021-02707-3.
Full textDorfner, Maja, Jan Klein, Katharina Senkleiter, Harald Lanig, Wolfgang Kreis та Jennifer Munkert. "Addressing the Evolution of Cardenolide Formation in Iridoid-Synthesizing Plants: Site-Directed Mutagenesis of PRISEs (Progesterone-5β-Reductase/Iridoid Synthase-like Enzymes) of Plantago Species". Molecules 29, № 23 (2024): 5788. https://doi.org/10.3390/molecules29235788.
Full textHu, Yumei, Weidong Liu, Satish R. Malwal, et al. "Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms." Angewandte Chemie International Edition 54, no. 51 (2015): 15478–82. http://dx.doi.org/10.1002/anie.201508310.
Full textHu, Yumei, Weidong Liu, Satish R. Malwal, et al. "Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms." Angewandte Chemie 127, no. 51 (2015): 15698–702. http://dx.doi.org/10.1002/ange.201508310.
Full textYang, Cui-cui, Xue-xian Kuai, Ya-li Li, et al. "Cornel Iridoid Glycoside Attenuates Tau Hyperphosphorylation by Inhibition of PP2A Demethylation." Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/108486.
Full textKlein, Jan, Mona Ernst, Alexander Christmann та ін. "Knockout of Arabidopsis thaliana VEP1, Encoding a PRISE (Progesterone 5β-Reductase/Iridoid Synthase-Like Enzyme), Leads to Metabolic Changes in Response to Exogenous Methyl Vinyl Ketone (MVK)". Metabolites 12, № 1 (2021): 11. http://dx.doi.org/10.3390/metabo12010011.
Full textNguyen, Trinh-Don, та Sarah E. O’Connor. "The Progesterone 5β-Reductase/Iridoid Synthase Family: A Catalytic Reservoir for Specialized Metabolism across Land Plants". ACS Chemical Biology 15, № 7 (2020): 1780–87. http://dx.doi.org/10.1021/acschembio.0c00220.
Full textAlagna, Fiammetta, Fernando Geu-Flores, Hajo Kries, et al. "Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits." Journal of Biological Chemistry 291, no. 11 (2015): 5542–54. http://dx.doi.org/10.1074/jbc.m115.701276.
Full textWang, Wenxiang, Ying Tan, Jingxin Mao, and Wei Xiong. "Swertiamarin and sweroside are potential inhibitors of COVID-19 based on the silico analysis." Medicine 103, no. 45 (2024): e40425. http://dx.doi.org/10.1097/md.0000000000040425.
Full textBrodyak, I. V., A. A. Moroz, A. Z. Kucharska, and N. O. Sybirna. "Fruit extracts of various cornelian cherry (Cornus mas L.) cultivars as antioxidant therapy for alleviating nitrative stress in erythrocytes of blood in experimental diabetes mellitus." Current issues in pharmacy and medicine: science and practice 17, no. 2 (2024): 154–59. http://dx.doi.org/10.14739/2409-2932.2024.2.301202.
Full textQin, Lili, Yun Zhu, Zhiqiang Ding, Xuejiao Zhang, Sheng Ye, and Rongguang Zhang. "Structure of iridoid synthase in complex with NADP + /8-oxogeranial reveals the structural basis of its substrate specificity." Journal of Structural Biology 194, no. 2 (2016): 224–30. http://dx.doi.org/10.1016/j.jsb.2016.02.010.
Full textGuo, Kaiwen, Cuicui Yang, and Lan Zhang. "The Reduction of Tau Hyperphosphorylation by Cornel Iridoid Glycosides Is Mediated by Their Influence on Calpain Activity." Evidence-Based Complementary and Alternative Medicine 2022 (January 20, 2022): 1–9. http://dx.doi.org/10.1155/2022/9213046.
Full textSalim, Vonny, Brent Wiens, Sayaka Masada-Atsumi, Fang Yu, and Vincenzo De Luca. "7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis." Phytochemistry 101 (May 2014): 23–31. http://dx.doi.org/10.1016/j.phytochem.2014.02.009.
Full textYang, Cuicui, Xuelian Li, Li Zhang, Yali Li, Lin Li та Lan Zhang. "Cornel iridoid glycoside induces autophagy to protect against tau oligomer neurotoxicity induced by the activation of glycogen synthase kinase-3β". Journal of Natural Medicines 73, № 4 (2019): 717–26. http://dx.doi.org/10.1007/s11418-019-01318-3.
Full textHu, Yumei, Weidong Liu, Satish R. Malwal, et al. "Titelbild: Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms (Angew. Chem. 51/2015)." Angewandte Chemie 127, no. 51 (2015): 15517. http://dx.doi.org/10.1002/ange.201510890.
Full textYe, Peng, Shuangcheng Liang, Xiaomin Wang, et al. "Transcriptome analysis and targeted metabolic profiling for pathway elucidation and identification of a geraniol synthase involved in iridoid biosynthesis from Gardenia jasminoides." Industrial Crops and Products 132 (June 2019): 48–58. http://dx.doi.org/10.1016/j.indcrop.2019.02.002.
Full textHu, Yumei, Weidong Liu, Satish R. Malwal, et al. "Cover Picture: Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms (Angew. Chem. Int. Ed. 51/2015)." Angewandte Chemie International Edition 54, no. 51 (2015): 15301. http://dx.doi.org/10.1002/anie.201510890.
Full textSchmidt, Karin, Jan Petersen, Jennifer Munkert та ін. "PRISEs (progesterone 5β-reductase and/or iridoid synthase-like 1,4-enone reductases): Catalytic and substrate promiscuity allows for realization of multiple pathways in plant metabolism". Phytochemistry 156 (грудень 2018): 9–19. http://dx.doi.org/10.1016/j.phytochem.2018.08.012.
Full textAwadasseid, Annoor, Wei Li, Zhan Liu, et al. "Characterization of Camptotheca acuminata 10-hydroxygeraniol oxidoreductase and iridoid synthase and their application in biological preparation of nepetalactol in Escherichia coli featuring NADP+ - NADPH cofactors recycling." International Journal of Biological Macromolecules 162 (November 2020): 1076–85. http://dx.doi.org/10.1016/j.ijbiomac.2020.06.223.
Full textZhang, Qi, Sijing Hu, Yuqiong He та ін. "Monotropein Protects against Inflammatory Bone Loss and Suppresses Osteoclast Formation and Bone Resorption by Inhibiting NFATc1 via NF-κB and Akt/GSK-3β Pathway". Nutrients 14, № 19 (2022): 3978. http://dx.doi.org/10.3390/nu14193978.
Full textSherden, Nathaniel H., Benjamin Lichman, Lorenzo Caputi, et al. "Identification of iridoid synthases from Nepeta species: Iridoid cyclization does not determine nepetalactone stereochemistry." Phytochemistry 145 (January 2018): 48–56. http://dx.doi.org/10.1016/j.phytochem.2017.10.004.
Full textTietze, Lutz-F. "Secologanin, eine biogenetische Schlüsselverbindung - Synthese und Biogenese der Iridoid- und Secoiridoidglykoside." Angewandte Chemie 95, no. 11 (2006): 840–53. http://dx.doi.org/10.1002/ange.19830951103.
Full textPetersen, J., M. Ernst, E. Gärtner та ін. "PRISE (progesterone 5β-reductases/iridoid synthases): Their roles in specialized plant metabolism". Planta Medica 81, S 01 (2016): S1—S381. http://dx.doi.org/10.1055/s-0036-1596807.
Full textWeinges, Klaus, Helene Iatridou, and Uwe Dietz. "Chemie und Stereochemie der Iridoide, XVI. EPC-Synthese von (−)-Hypnophilin." Liebigs Annalen der Chemie 1991, no. 9 (1991): 893–902. http://dx.doi.org/10.1002/jlac.1991199101154.
Full textSandholu, Anand S., Madhura Mohole, William L. Duax, Hirekodathakallu V. Thulasiram, Durba Sengupta, and Kiran Kulkarni. "Dynamics of loops at the substrate entry channel determine the specificity of iridoid synthases." FEBS Letters 592, no. 15 (2018): 2624–35. http://dx.doi.org/10.1002/1873-3468.13174.
Full textHe, Jingyu, Xianyuan Lu, Ting Wei та ін. "Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages". International Journal of Molecular Sciences 19, № 7 (2018): 2027. http://dx.doi.org/10.3390/ijms19072027.
Full textWeinges, Klaus, and Dieter Brunner. "Chemie und Stereochemie der Iridoide, VII1) Enantiomerenreine Zwischenprodukte zur Synthese von diastereomeren 12-epi-Prostaglandinen." Liebigs Annalen der Chemie 1986, no. 1 (1986): 54–68. http://dx.doi.org/10.1002/jlac.198619860106.
Full textEl-Hela, Atef A., Marwa S. Abu Bakr, Mostafa M. Hegazy, et al. "Phytochemical Characterization of Pterocephalus frutescens with In-Silico Evaluation as Chemotherapeutic Medicine and Oral Pharmacokinetics Prediction Study." Scientia Pharmaceutica 91, no. 1 (2023): 7. http://dx.doi.org/10.3390/scipharm91010007.
Full textWeinges, Klaus, and Ulrich Lernhardt. "Chemie und Stereochemie der Iridoide, XIII. Synthese von enantiomerenreinem (1R,2S,2″Z)-(+)-Methyljasmonat aus Catalpol." Liebigs Annalen der Chemie 1990, no. 8 (1990): 751–54. http://dx.doi.org/10.1002/jlac.1990199001141.
Full textLi, Yuanjun, Xiaoru Zhai, Ligang Ma, et al. "Transcriptome Analysis Provides Insights into Catalpol Biosynthesis in the Medicinal Plant Rehmannia glutinosa and the Functional Characterization of RgGES Genes." Genes 15, no. 2 (2024): 155. http://dx.doi.org/10.3390/genes15020155.
Full textPetersen, Jan, Harald Lanig, Jennifer Munkert, Peter Bauer, Frieder Müller-Uri та Wolfgang Kreis. "Progesterone 5β-reductases/iridoid synthases (PRISE): gatekeeper role of highly conserved phenylalanines in substrate preference and trapping is supported by molecular dynamics simulations". Journal of Biomolecular Structure and Dynamics 34, № 8 (2015): 1667–80. http://dx.doi.org/10.1080/07391102.2015.1088797.
Full textInada, Aline Carla, Gabriela Torres Silva, Laleska Pâmela Rodrigues da Silva, et al. "Therapeutic Effects of Morinda citrifolia Linn. (Noni) Aqueous Fruit Extract on the Glucose and Lipid Metabolism in High-Fat/High-Fructose-Fed Swiss Mice." Nutrients 12, no. 11 (2020): 3439. http://dx.doi.org/10.3390/nu12113439.
Full textWeinges, Klaus, Karl Neuberger, Hartmut Schick, Uwe Reifenstahl, and Hermann Irngartinger. "Chemie und Stereochemie der Iridoide, XV. Eine effiziente Synthese enantiomerenreiner (−)-Specionin-Analoga aus peracetylierten Iridoidglucosiden Kristall- und Molekülstruktur von (−)-3′-Methoxyspecionin." Liebigs Annalen der Chemie 1991, no. 5 (1991): 477–80. http://dx.doi.org/10.1002/jlac.199119910186.
Full textDanielewski, Maciej, Andrzej Rapak, Angelika Kruszyńska та ін. "Cornelian Cherry (Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model". International Journal of Molecular Sciences 25, № 2 (2024): 1199. http://dx.doi.org/10.3390/ijms25021199.
Full textWeinges, Klaus, Hanspeter Gethöffer, Ursula Huber-Patz, Hans Rodewald, and Hermann Irngartinger. "Chemie und Stereochemie der Iridoide, IX. EPC-Synthese von (1R,2R,2″Z)-(−)-Methyl-jasmonat aus Catalpol – Kristall- und Molekularstruktur von Methyl-dehydrojasmonat-semicarbazon." Liebigs Annalen der Chemie 1987, no. 4 (1987): 361–66. http://dx.doi.org/10.1002/jlac.198719870335.
Full textChawla, Pooja A., Parul Grover, Lovekesh Mehta, et al. "Exploring the multitarget potential of iridoids: Advances and Applications." Current Topics in Medicinal Chemistry 23 (December 22, 2022). http://dx.doi.org/10.2174/1568026623666221222142217.
Full textSmit, Samuel J., Sefa Ayten, Barbara A. Radzikowska, et al. "The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum)." Plant Journal, March 15, 2024. http://dx.doi.org/10.1111/tpj.16698.
Full textAničić, Neda, Dragana Matekalo, Marijana Skorić, et al. "Functional iridoid synthases from iridoid producing and non-producing Nepeta species (subfam. Nepetoidae, fam. Lamiaceae)." Frontiers in Plant Science 14 (January 3, 2024). http://dx.doi.org/10.3389/fpls.2023.1211453.
Full textGalicia-Campos, Estrella, Ana García-Villaraco, M. B. Montero-Palmero, F. Javier Gutiérrez-Mañero, and Beatriz Ramos-Solano. "Bacillus H47 triggers Olea europaea metabolism activating DOXP and shikimate pathways simultaneously and modifying leaf extracts’ antihypertensive activity." Frontiers in Microbiology 13 (October 4, 2022). http://dx.doi.org/10.3389/fmicb.2022.1005865.
Full textGalicia, Campos Estrella, ANA GARCÍA-VILLARACO, María Belén Montero, Francisco Javier Gutierrez-Mañero, and Beatriz Ramos-Solano. "Bacillus H47 triggers Olea europaea metabolism activating DOXP and shikimate pathways simultaneously and modifying leaf extracts' antihypertensive activity." Frontiers in Microbiology, October 4, 2022. https://doi.org/10.5281/zenodo.10607728.
Full textRodríguez-López, Carlos E., Yindi Jiang, Mohamed O. Kamileen, et al. "Phylogeny-aware chemoinformatic analysis of chemical diversity in the Lamiaceae enables iridoid pathway assembly and discovery of aucubin synthase." Molecular Biology and Evolution, March 17, 2022. http://dx.doi.org/10.1093/molbev/msac057.
Full text