Journal articles on the topic 'Iron Carbide Nanoparticle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Iron Carbide Nanoparticle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ziogas, Panagiotis, Athanasios B. Bourlinos, Jiri Tucek, Ondrej Malina, and Alexios P. Douvalis. "Novel Magnetic Nanohybrids: From Iron Oxide to Iron Carbide Nanoparticles Grown on Nanodiamonds." Magnetochemistry 6, no. 4 (2020): 73. http://dx.doi.org/10.3390/magnetochemistry6040073.
Full textAlahmadi, Mohammed, and Mohamed Siaj. "Graphene-Assisted Magnetic Iron Carbide Nanoparticle Growth." ACS Applied Nano Materials 1, no. 12 (2018): 7000–7005. http://dx.doi.org/10.1021/acsanm.8b01794.
Full textAftandiliants, Y. G., and К. G. Lopatko. "Iron nanoparticle influence on the structure of improved structural steel and its properties." Metaloznavstvo ta obrobka metalìv 96, no. 4 (2020): 10–16. http://dx.doi.org/10.15407/mom2020.04.010.
Full textZhou, Ming, Hsing-Lin Wang, and Shaojun Guo. "Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials." Chemical Society Reviews 45, no. 5 (2016): 1273–307. http://dx.doi.org/10.1039/c5cs00414d.
Full textRocky, Bahrum Prang, Christopher R. Weinberger, Steven R. Daniewicz, and Gregory B. Thompson. "Carbide Nanoparticle Dispersion Techniques for Metal Powder Metallurgy." Metals 11, no. 6 (2021): 871. http://dx.doi.org/10.3390/met11060871.
Full textHasan, Murtaza, Huma Gulzar, Ayesha Zafar, et al. "Multiplexing surface anchored functionalized iron carbide nanoparticle: A low molecular weight proteome responsive nano-tracer." Colloids and Surfaces B: Biointerfaces 203 (July 2021): 111746. http://dx.doi.org/10.1016/j.colsurfb.2021.111746.
Full textKhare, Varsha, Alexander Kraupner, Alexandre Mantion, et al. "Stable Iron Carbide Nanoparticle Dispersions in [Emim][SCN] and [Emim][N(CN)2] Ionic Liquids." Langmuir 26, no. 13 (2010): 10600–10605. http://dx.doi.org/10.1021/la100775m.
Full textNarkiewicz, U., N. Guskos, W. Arabczyk, et al. "XRD, TEM and magnetic resonance studies of iron carbide nanoparticle agglomerates in a carbon matrix." Carbon 42, no. 5-6 (2004): 1127–32. http://dx.doi.org/10.1016/j.carbon.2003.12.069.
Full textChen, Xiaojun, Zhiming Su, Li Zhang, et al. "Iron Nanoparticle-Containing Silicon Carbide Fibers Prepared by Pyrolysis of Fe(CO)5-Doped Polycarbosilane Fibers." Journal of the American Ceramic Society 93, no. 1 (2010): 89–95. http://dx.doi.org/10.1111/j.1551-2916.2009.03369.x.
Full textZhao, Fan, Jing Yu, Weiliang Gao, et al. "H2O2-independent chemodynamic therapy initiated from magnetic iron carbide nanoparticle-assisted artemisinin synergy." RSC Advances 11, no. 59 (2021): 37504–13. http://dx.doi.org/10.1039/d1ra04975e.
Full textPannitz, Oliver, Felix Großwendt, Arne Lüddecke, Arno Kwade, Arne Röttger, and Jan Torsten Sehrt. "Improved Process Efficiency in Laser-Based Powder Bed Fusion of Nanoparticle Coated Maraging Tool Steel Powder." Materials 14, no. 13 (2021): 3465. http://dx.doi.org/10.3390/ma14133465.
Full textLaGrow, Alec P., Simone Famiani, Andreas Sergides, et al. "Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles." Materials 15, no. 4 (2022): 1557. http://dx.doi.org/10.3390/ma15041557.
Full textKhurshid, Hafsa, Yassir A. Abdu, Eamonn Devlin, Bashar Afif Issa, and George C. Hadjipanayis. "Chemically synthesized nanoparticles of iron and iron-carbides." RSC Advances 10, no. 48 (2020): 28958–64. http://dx.doi.org/10.1039/d0ra02996c.
Full textZavala-Rivera, P., A. I. Argüelles-Pesqueira, J. A. Lucero-Acuña, P. Guerrero-Germán, and A. Rosas-Durazo. "Sonosynthesis of Iron Carbide@Iron Oxide Nanoparticles." Microscopy and Microanalysis 24, S1 (2018): 1686–87. http://dx.doi.org/10.1017/s1431927618008917.
Full textKale, Sumeet S., Juan M. Asensio, Marta Estrader, et al. "Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts." Catalysis Science & Technology 9, no. 10 (2019): 2601–7. http://dx.doi.org/10.1039/c9cy00437h.
Full textSauceda-Oloño, Perla Yazmin, Hector Cardenas-Sanchez, Anya Isabel Argüelles-Pesqueira, et al. "Micelle Encapsulation of Ferromagnetic Nanoparticles of Iron Carbide@Iron Oxide in Chitosan as Possible Nanomedicine Agent." Colloids and Interfaces 4, no. 2 (2020): 22. http://dx.doi.org/10.3390/colloids4020022.
Full textYu, Jing, Fan Chen, Weiliang Gao, et al. "Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications." Nanoscale Horizons 2, no. 2 (2017): 81–88. http://dx.doi.org/10.1039/c6nh00173d.
Full textDavydov, Valery, Alexandra Rakhmanina, Igor Kireev, et al. "Solid state synthesis of carbon-encapsulated iron carbide nanoparticles and their interaction with living cells." J. Mater. Chem. B 2, no. 27 (2014): 4250–61. http://dx.doi.org/10.1039/c3tb21599g.
Full textSwiatkowska-Warkocka, Zaneta. "Bimetal CuFe Nanoparticles—Synthesis, Properties, and Applications." Applied Sciences 11, no. 5 (2021): 1978. http://dx.doi.org/10.3390/app11051978.
Full textGao, Shiyuan, Haoran Zhou, Yannan Xia, et al. "Carbon fiber-assisted iron carbide nanoparticles as an efficient catalyst via peroxymonosulfate activation for organic contaminant removal." Catalysis Science & Technology 9, no. 16 (2019): 4365–73. http://dx.doi.org/10.1039/c9cy00756c.
Full textLv, Cuncai, Qianpeng Yang, Qingli Huang, Zhipeng Huang, Han Xia, and Chi Zhang. "Phosphorus doped single wall carbon nanotubes loaded with nanoparticles of iron phosphide and iron carbide for efficient hydrogen evolution." Journal of Materials Chemistry A 4, no. 34 (2016): 13336–43. http://dx.doi.org/10.1039/c6ta04329a.
Full textYang, Ziyu, Tianshan Zhao, Xiaoxiao Huang, et al. "Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions." Chemical Science 8, no. 1 (2017): 473–81. http://dx.doi.org/10.1039/c6sc01819j.
Full textSorescu, Monica, and Mark Allwes. "Behavior of Graphite and Graphene under Mechanochemical Activation with Hematite and Magnetite Nanoparticles." MRS Advances 4, no. 3-4 (2018): 155–62. http://dx.doi.org/10.1557/adv.2018.632.
Full textLibenská, Hana, Jan Hanuš, Tereza Košutová, et al. "Plasma‐based synthesis of iron carbide nanoparticles." Plasma Processes and Polymers 17, no. 11 (2020): 2000105. http://dx.doi.org/10.1002/ppap.202000105.
Full textWan, Gang, Ming Ma, Alec (Yi) Jia, et al. "A 3D hierarchical assembly of optimized heterogeneous carbon nanosheets for highly efficient electrocatalysis." Journal of Materials Chemistry A 4, no. 30 (2016): 11625–29. http://dx.doi.org/10.1039/c6ta03930h.
Full textDavid, B., N. Pizúrová, O. Schneeweiss, Petr Bezdička, I. Morjan, and R. Alexandrescu. "Iron/Graphite Core-Shell Structured Nanoparticles Prepared by Annealing of Nanopowder." Materials Science Forum 480-481 (March 2005): 469–76. http://dx.doi.org/10.4028/www.scientific.net/msf.480-481.469.
Full textSergiienko, Ruslan, Etsuro Shibata, Zentaro Akase, Hiroyuki Suwa, Daisuke Shindo, and Takashi Nakamura. "Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol." Journal of Materials Research 21, no. 10 (2006): 2524–33. http://dx.doi.org/10.1557/jmr.2006.0316.
Full textXia, Hongyin, Shan Zhang, Xiaoqing Zhu, et al. "Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers." Journal of Materials Chemistry A 8, no. 35 (2020): 18125–31. http://dx.doi.org/10.1039/d0ta06306a.
Full textJang, Sanha, Shin Wook Kang, Dong Hyun Chun, et al. "Robust iron-carbide nanoparticles supported on alumina for sustainable production of gasoline-range hydrocarbons." New Journal of Chemistry 41, no. 7 (2017): 2756–63. http://dx.doi.org/10.1039/c7nj00437k.
Full textHong, Seok Yong, Dong Hyun Chun, Jung-Il Yang, et al. "A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer–Tropsch synthesis." Nanoscale 7, no. 40 (2015): 16616–20. http://dx.doi.org/10.1039/c5nr04546k.
Full textHarris, Daniel P., Cheng Wan, Yuqi She, Brittney R. Beck, Daniel S. Forbes, and Brian M. Leonard. "Amine-based synthesis of Fe3C nanomaterials: mechanism and impact of synthetic conditions." Zeitschrift für Naturforschung B 76, no. 10-12 (2021): 803–10. http://dx.doi.org/10.1515/znb-2021-0134.
Full textNovopashin, S. A., N. A. Demin, and A. V. Zaikovskii. "Pressure Dependent Magnetization of Arc Discharge Fe–C Soot." Materials Science Forum 843 (February 2016): 96–100. http://dx.doi.org/10.4028/www.scientific.net/msf.843.96.
Full textCha, Seunghee, Heewon Kim, Hyunkyung Choi, Chul Sung Kim та Kyoung-Su Ha. "Effects of Silica Shell Encapsulated Nanocrystals on Active χ-Fe5C2 Phase and Fischer–Tropsch Synthesis". Nanomaterials 12, № 20 (2022): 3704. http://dx.doi.org/10.3390/nano12203704.
Full textArgüelles-Pesqueira, A. I., N. M. Diéguez-Armenta, A. K. Bobadilla-Valencia, et al. "Low intensity sonosynthesis of iron carbide@iron oxide core-shell nanoparticles." Ultrasonics Sonochemistry 49 (December 2018): 303–9. http://dx.doi.org/10.1016/j.ultsonch.2018.08.017.
Full textJin, Yinjia, Jun Deng, Jing Yu, Ce Yang, Meiping Tong, and Yanglong Hou. "Fe5C2 nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation." Journal of Materials Chemistry B 3, no. 19 (2015): 3993–4000. http://dx.doi.org/10.1039/c5tb00201j.
Full textKumar, Rajeev, Harish Kumar Choudhary, Shital Patangrao Pawar, Suryasarathi Bose, and Balaram Sahoo. "Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption." Physical Chemistry Chemical Physics 19, no. 34 (2017): 23268–79. http://dx.doi.org/10.1039/c7cp03175k.
Full textLemraski, Ensieh Ghasemian, Zohreh Tahmasebi, Tahereh Valadbeigi, and Maryam Hajjami. "Incorporation of Iron Nanoparticles into Silicon Carbide Nanoparticles as Novel Antimicrobial Bimetallic Nanoparticles." Silicon 11, no. 2 (2018): 857–67. http://dx.doi.org/10.1007/s12633-018-9872-6.
Full textFletcher, D. C., R. Hunter, W. Xia, et al. "Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’." Journal of Materials Chemistry A 7, no. 33 (2019): 19506–12. http://dx.doi.org/10.1039/c9ta06876g.
Full textHuang, Guoming, Juan Hu, Hui Zhang, Zijian Zhou, Xiaoqin Chi, and Jinhao Gao. "Highly magnetic iron carbide nanoparticles as effective T2contrast agents." Nanoscale 6, no. 2 (2014): 726–30. http://dx.doi.org/10.1039/c3nr04691e.
Full textOkotrub, Alexander V., Dmitriy V. Gorodetsky, Artem V. Gusel’nikov, et al. "Distribution of Iron Nanoparticles in Arrays of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition." Materials 15, no. 19 (2022): 6639. http://dx.doi.org/10.3390/ma15196639.
Full textGavrish, V. M., T. V. Chayka, and G. A. Baranov. "Investigation of the Effect of Tungsten Carbide (WC) Nanopowder on Iron-Based Powder Structural Materials." Solid State Phenomena 316 (April 2021): 455–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.316.455.
Full textGangwar, A., G. Singh, S. K. Shaw, et al. "Synthesis and structural characterization of CoxFe3−xC (0 ≤ x ≤ 0.3) magnetic nanoparticles for biomedical applications." New Journal of Chemistry 43, no. 8 (2019): 3536–44. http://dx.doi.org/10.1039/c8nj05240a.
Full textAlexandrescu, R., S. Cojocaru, A. Crunteanu, et al. "Preparation of iron carbide and iron nanoparticles by laser-induced gas phase pyrolysis." Le Journal de Physique IV 09, PR8 (1999): Pr8–537—Pr8–544. http://dx.doi.org/10.1051/jp4:1999867.
Full textMiyatani, R., Y. Yamada, and Y. Kobayashi. "Mössbauer study of iron carbide nanoparticles produced by sonochemical synthesis." Journal of Radioanalytical and Nuclear Chemistry 303, no. 2 (2014): 1503–6. http://dx.doi.org/10.1007/s10967-014-3507-1.
Full textMatsue, T., Y. Yamada, and Y. Kobayashi. "Iron carbide nanoparticles produced by laser ablation in organic solvent." Hyperfine Interactions 205, no. 1-3 (2011): 31–35. http://dx.doi.org/10.1007/s10751-011-0452-z.
Full textDai, Linxin, Zhi Jin, Xinge Liu, Long Feng, Jianfeng Ma, and Zhe Ling. "Green Synthesis of Carbon-Encapsulated Magnetic Fe3O4 Nanoparticles Using Hydrothermal Carbonization from Rattan Holocelluloses." Coatings 11, no. 11 (2021): 1397. http://dx.doi.org/10.3390/coatings11111397.
Full textXue, Juanhong, Ling Zhao, Zhiyu Dou, et al. "Nitrogen-doped 3D porous carbons with iron carbide nanoparticles encapsulated in graphitic layers derived from functionalized MOF as an efficient noble-metal-free oxygen reduction electrocatalysts in both acidic and alkaline media." RSC Advances 6, no. 112 (2016): 110820–30. http://dx.doi.org/10.1039/c6ra24299e.
Full textLara-Romero, J., G. Alonso-Núñez, S. Jiménez-Sandoval, and M. Avalos-Borja. "Growth of Multi-Walled Carbon Nanotubes by Nebulized Spray Pyrolysis of a Natural Precursor: Alpha-Pinene." Journal of Nanoscience and Nanotechnology 8, no. 12 (2008): 6509–12. http://dx.doi.org/10.1166/jnn.2008.18416.
Full textLuo, Ning, Xiaojie Li, Xiaohong Wang, Honghao Yan, Chengjiao Zhang, and Haitao Wang. "Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method." Carbon 48, no. 13 (2010): 3858–63. http://dx.doi.org/10.1016/j.carbon.2010.06.051.
Full textPerez, Henri, Virginie Jorda, Pierre Bonville, et al. "Synthesis and Characterization of Carbon/Nitrogen/Iron Based Nanoparticles by Laser Pyrolysis as Non-Noble Metal Electrocatalysts for Oxygen Reduction." C 4, no. 3 (2018): 43. http://dx.doi.org/10.3390/c4030043.
Full text