Academic literature on the topic 'Irreversible Thermodynamik'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Irreversible Thermodynamik.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Irreversible Thermodynamik"
Schönert, H., and D. Urban. "Materialien und irreversible Thermodynamik: Einführung in die Thermodynamik der irreversiblen Prozesse. Von H. Baur. Wissenschaftliche Buchgesellschaft, Darmstadt 1984. X, 231 S., 26 Abb., kart. DM 39,-. ISBN 3-534-07323-1." Nachrichten aus Chemie, Technik und Laboratorium 33, no. 7 (July 1985): 607. http://dx.doi.org/10.1002/nadc.19850330711.
Full textBryant, Samuel J., and Benjamin B. Machta. "Energy dissipation bounds for autonomous thermodynamic cycles." Proceedings of the National Academy of Sciences 117, no. 7 (February 4, 2020): 3478–83. http://dx.doi.org/10.1073/pnas.1915676117.
Full textRazzitte, Adrián César, Luciano Enciso, Marcelo Gun, and María Sol Ruiz. "Nonequilibrium Thermodynamics and Entropy Production in Simulation of Electrical Tree Growth." Proceedings 46, no. 1 (November 17, 2019): 25. http://dx.doi.org/10.3390/ecea-5-06683.
Full textWANG, LIQIU. "AN APPROACH FOR THERMODYNAMIC REASONING." International Journal of Modern Physics B 10, no. 20 (September 15, 1996): 2531–51. http://dx.doi.org/10.1142/s0217979296001124.
Full textChen, M. "Dynamical stability and thermodynamic stability in irreversible thermodynamics." Journal of Mathematical Physics 32, no. 3 (March 1991): 744–48. http://dx.doi.org/10.1063/1.529365.
Full textPekař, Miloslav. "Thermodynamics and foundations of mass-action kinetics." Progress in Reaction Kinetics and Mechanism 30, no. 1-2 (June 2005): 3–113. http://dx.doi.org/10.3184/007967405777874868.
Full textGanghoffer, Jean-François, and Rachid Rahouadj. "Thermodynamic formulations of continuum growth of solid bodies." Mathematics and Mechanics of Solids 22, no. 5 (December 10, 2015): 1027–46. http://dx.doi.org/10.1177/1081286515616228.
Full textBryant, M. D., M. M. Khonsari, and F. F. Ling. "On the thermodynamics of degradation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2096 (April 8, 2008): 2001–14. http://dx.doi.org/10.1098/rspa.2007.0371.
Full textChimal, J. C., N. Sánchez, and PR Ramírez. "Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics." Journal of Physics: Conference Series 792 (January 2017): 012082. http://dx.doi.org/10.1088/1742-6596/792/1/012082.
Full textJou, D., J. Casas-Vazquez, J. A. Robles-Dominguez, and L. S. Garcia Colin. "Linear Burnett coefficients and thermodynamic fluctuations in extended irreversible thermodynamics." Physica A: Statistical Mechanics and its Applications 137, no. 1-2 (July 1986): 349–58. http://dx.doi.org/10.1016/0378-4371(86)90081-6.
Full textDissertations / Theses on the topic "Irreversible Thermodynamik"
Leonhardt, Karsten. "Optimierte irreversible Thermodynamik: Modell einer stochastischen Wärmekraftmaschine." Thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901382.
Full textBoldt, Frank. "A Framework for Modeling Irreversible Processes Based on the Casimir Companion." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-145179.
Full textThermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird
De, Lucca Brenno Jason Sanzio Peter. "Linear irreversible thermodynamics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20975/.
Full textAmezawa, Koji. "Irreversible Thermodynamic Studies on Electrochemical Systems." Kyoto University, 1998. http://hdl.handle.net/2433/77878.
Full textDe, Koeijer Gelein M. "Energy efficient operation of distillation columns and a reactor applying irreversible thermodynamics." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemistry, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-539.
Full textIn this thesis the entropy production rate of diabatic distillation columns and a SO2 converter were minimised. This is the same as maximising the second law energy efficiency of the systems. The development of chemical industry can be made more sustainable by knowing this minimum. We found that the entropy production rate of distillation could be reduced up to 50%. In order to achieve this reduction, heat exchangers were added on each tray. The characteristics of an optimum distillation column were presented. Furthermore, the entropy production rate of a SO2 converter was reduced with 16.7% by altering the heights of catalytic beds, transfer areas of heat exchangers, and temperature differences over heat exchangers. These reductions show that there is still a large improvement potential in chemical industry. By applying the improved operations the world oil production can be reduced in the order of magnitude of 1%. A similar reduction in the emission of the greenhouse gas CO2 can be expected.
For deriving the entropy production rate in a systematic manner the theory of irreversible thermodynamics was useful. A simpler and a more complicated equation for the entropy production rate of distillation were derived. The simpler equation used only one force-flux product. It was suitable for minimisation of the entropy production rate of columns with the assumption of equilibrium between the outlets on each tray. The more complicated equation was able to describe satisfactorily the entropy production rate of an experimental column that separated the non-ideal mixture water-ethanol. It was next used to derive an extended set of transport equations for distillation, that includes the interface and the Soret effect (or thermal diffusion). Finally, irreversible thermodynamics was used to describe the contributions to the entropy production rate of heat transfer in heat exchangers. This contribution had a significant impact on the results of the minimisations.
A method that can provide the chemical industry the thermodynamically optimum operation of distillation columns and reactors was constructed and exemplified. Once the system and its boundaries are determined, the objective function with its constraints and variables are set up. Several suitable minimisation procedures exist. Finally, the design of the thermodynamically optimum system is obtained from the state of minimum entropy production rate.
Ramirez, Estay Hector. "Control of irreversible thermodynamic processes using port-Hamiltonian systems defined on pseudo-Poisson and contact structures." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10033/document.
Full textThis doctoral thesis presents results on the use of port Hamiltonian systems (PHS) and controlled contact systems for modeling and control of irreversible thermodynamic processes. Firstly, Irreversible PHS (IPHS) has been defined as a class of pseudo-port Hamiltonian system that expresses the first and second principle of Thermodynamics and encompasses models of heat exchangers and chemical reactors. These IPHS have been lifted to the complete Thermodynamic Phase Space endowed with a natural contact structure, thereby defining a class of controlled contact systems, i.e. nonlinear control systems defined by strict contact vector fields. Secondly, it has been shown that only a constant control preserves the canonical contact structure, hence a structure preserving feedback necessarily shapes the closed-loop contact form. The conditions for state feedbacks shaping the contact form have been characterized and have lead to the definition of input-output contact systems. Thirdly, it has been shown that strict contact vector fields are in general unstable at their zeros, hence the condition for the the stability in closed-loop has been characterized as stabilization on some closed-loop invariant Legendre submanifolds
Wagner, Katharina. "A graphic based interface to Endoreversible Thermodynamics." Master's thesis, [S.l. : s.n.], 2008. https://monarch.qucosa.de/id/qucosa%3A18967.
Full textAcosta, Iglesias Dagoberto. "ON THE EMERGENT ASPECTS OF QUANTUM MECHANICS IN RELATION TO THE THERMODYNAMICS OF IRREVERSIBLE PROCESSES AND EMERGENT GRAVITY." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/36530.
Full textAcosta Iglesias, D. (2012). ON THE EMERGENT ASPECTS OF QUANTUM MECHANICS IN RELATION TO THE THERMODYNAMICS OF IRREVERSIBLE PROCESSES AND EMERGENT GRAVITY [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36530
Palancia
PEREA, CÓRDOBA MILTÓN HENRY. "On the semiclassical limit of emergent quantum mechanics, as a classical thermodynamics of irreversible processes in the linear regime." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/54840.
Full text[ES] Motivado por los problemas conceptuales relativos a la cuantización de la gravedad, el físico teórico holandés G. 't Hooft (premio Nobel de física en 1999) sugirió la noción de que la mecánica cuántica pudiera ser la teoría emergente de alguna otra teoría determinista subyacente. Dicha propuesta se conoce como la mecánica cuántica en tanto que teoría emergente. Esta línea de investigación, iniciada por 't Hooft a finales de los años 90, ha sido objeto de intenso estudio a lo largo de los últimos 15 años, tanto por el mismo 't Hooft como por numerosos otros investigadores. En esta tesis doctoral presentamos nuestra propia aproximación a la mecánica cuántica como fenómeno emergente. De acuerdo con este paradigma emergente para la mecánica cuántica, son efectos de pérdida de información en la teoría determinista subyacente los que conducen a que los estados de ésta última se agrupen en clases de equivalencia, las cuales clases se identifican con los estados cuánticos de la mecánica cuántica emergente. En breve, la cuantización es disipación, según 't Hooft. Asimismo se ha argumentado en la literatura que, en presencia de campos gravitatorios débiles, los efectos cuánticos son indistinguibles de los efectos térmicos. Dado que éstos últimos son típicamente disipativos por naturaleza, la presencia de un campo gravitatorio débil debería proporcionar un entorno en el cual los efectos cuánticos puedan entenderse como debidos a fluctuaciones térmicas, disipativas. Además, dado que los campos gravitatorios pueden eliminarse localmente (gracias al principio de equivalencia), debería existir algún tipo de principio de equivalencia para los efectos cuánticos, i.e., algún tipo de principio de relatividad para la noción de cuanticidad, por oposición a la noción de clasicidad. En esta tesis doctoral elaboramos estas ideas. Sin embargo, una vez fijado un sistema de referencia, los efectos gravitatorios ya no pueden eliminarse, y la afirmación de que la cuantización es disipación se presta a un tratamiento termodinámico. En esta tesis también presentamos un mecanismo mediante el cual la mecánica cuántica se ve emerger, comprobándose así explícitamente la propuesta de 't Hooft. Este mecanismo se basa en un diccionario entre la mecánica cuántica semiclásica, por un lado, y la teoría clásica de la termodinámica irreversible en el régimen lineal, por otro lado. Dicho formalismo termodinámico, desarrollado por los premios Nobel Onsager y Prigogine, puede trasladarse fácilmente a la mecánica cuántica semiclásica.
[CAT] Motivat pels problemes conceptuals en relació a la quantització de la gravetat, el físic teóric holandés G. 't Hooft (premi Nobel de física en 1999) va suggerir la noció de que la mecànica quàntica pogués ser la teoria emergent d ' alguna altra teoria determinista subjacent. A questa proposta es coneix com a mecanica quantica en tant que teoria emergent. Aquesta línia d ' investigació, iniciada per 't Hooft a final dels anys 90, ha sigut intensament estudiada durant els últims 15 anys , tant pel mateix 't Hooft com per nombrosos altres investigadors. En aquesta tesi doctoral presentem la nostra própia aproximació a la mecànica quàntica com a fenomen emergent. D ' acord amb aquest paradigma emergent per a la mecànica quàntica, són efectes de pérdua d ' informació en la teoria determinista, subjacent els que condueixen a que els estats d ' aquesta última s ' agrupen en classes d ' equivalència, les quals s ' identifiquen amb els estats quàntics de la mecànica quàntica emergent. Breument, la quantització es dissipació segons 't Hooft. Aixímateix, s ' ha argumentat a la literatura que, en presència de camps gravitatoris febles, els efectes quàntics són indistingibles dels efectes tèrmics. Com aquests últims són típicament dissipatius per naturalesa, la presència d ' un camp gravitatori feble hauria de proporcionar un entorn en el qual els efectes quàntico es puguen entendre com deguts a fluctuacions tèrmiques, dissipatives. A més a més, com que els camps gravitatoris poden eliminar-se localment (gràcies al principi d ' equivalència), hauria d ' existir algun tipus de principi d ' equivalència per als efectes quàntics, i.e. , algun tipus de principi de relativitat per a la noció de quanticitat, per oposició a la noció de classicitat. En aquesta tesi doctoral elaborem aquestes idees. En canvi, una vegada fixat el sistema de referència, els efectes gravitatoris ja no poden eliminar-se, i l ' afirmació de que la quantització és dissipació es presta a un tractament termodinàmic. En aquesta tesi també presentem un mecanisme mitjançant el qual la mecànica quàntica es veu emergir, comprovant-se explícitament la proposta de 't Hooft. A quest mecanisme es basa en un diccionari entre la mecànica quàntica semiclàssica, d ' una banda, i la teoria clàssica de la termodinàmica irreversible en el règim lineal, d ' una altra banda. A quest formalisme termodinàmic, desenvolupat pels premis Nobel Onsager i Prigogine, pot traslladar-se fàcilment a la mecànica quàntica semiclàssica.
Perea Córdoba, MH. (2015). On the semiclassical limit of emergent quantum mechanics, as a classical thermodynamics of irreversible processes in the linear regime [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54840
TESIS
Schubert, Sven. "Stochastic and temperature-related aspects of the Preisach model of hysteresis." Doctoral thesis, Universitätsbibliothek Chemnitz, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-70798.
Full textThe aim of this thesis is to investigate the Preisach model in regard to stochastically driving and temperature-related aspects. The Preisach model is a phenomenological model for systems with hysteresis which is often successfully applied. Hysteresis is a widespread phenomenon which is observed in nature and the key feature of certain technological applications. Further, it contributes to phenomena of interest in social science and economics as well. Prominent examples are the magnetization of ferromagnetic materials in an external magnetic field or the adsorption-desorption hysteresis observed in porous media. Hysteresis involves the development of a hysteresis memory, and multistability in the interrelations between external driving fields and system response. In the first part, we mainly investigate the response of Preisach hysteresis models driven by stochastic input processes with regard to autocorrelation functions to quantify the influence of the system’s memory. Using rigorous methods, it is shown that the development of a hysteresis memory is reflected in the possibility of long-time tails in the autocorrelation functions, even for uncorrelated driving fields. In the case of uncorrelated driving, these long-time tails in the autocorrelations of the system’s response are determined only by the tails of the involved densities. They will be observed if there are broad Preisach densities assigning a high weight to elementary loops of large width and narrow input densities such that rare extreme events of the input time series contribute significantly to the output for a long period of time. Afterwards, these results are extended by simulations to driving fields which themselves show correlations. It is shown that the autocorrelation of the output does not decay faster than the autocorrelation of the input process. Further, there is a possibility that long-term memory in the hysteretic response is more pronounced in the case of uncorrelated driving than in the case of correlated driving. The behavior of the output probability distribution at the saturation values is quite universal. It is not affected by the presence of correlations and allows conclusions whether the input density is much more narrow than the Preisach density or not. Moreover, the existence of effective Preisach densities is shown which define equivalence classes of systems of input and Preisach densities which lead to realizations of the same output variable. The asymptotic behavior of an effective Preisach density determines the asymptotic correlation decay of the system’s response in the case of uncorrelated driving. In the second part, temperature-related effects are considered. It is reviewed how the non-equilibrium Preisach model in its micromagnetic picture can be related to temperature within the framework of extended irreversible thermodynamics. The irreversible response of a ferromagnetic material, namely, Nickel nanoparticles in a fullerene matrix, is simulated. The model includes superparamagnetism where ferromagnetism breaks down at temperatures lower than the Curie temperature and the results are compared to experimental data. Furthermore, we adapt known results for the thermal relaxation of the system’s memory in the form of a front propagation in the Preisach plane derived basically from solving a master equation and by the use of a contradictory assumption. A closer look is taken at short time scales which dissolves the contradiction and shows that the known results apply, taking into account the fact that the dividing line propagation starts with an additional delay time depending on the front coordinates in the Preisach plane. Additionally, it is outlined how thermal relaxation behavior in the Preisach model of hysteresis can be studied using a Fokker-Planck equation. The latter is solved analytically in the non-hysteretic limit using eigenfunction methods. The results indicate a change in the relaxation behavior, especially on short time scales
Books on the topic "Irreversible Thermodynamik"
Jou, D. Extended Irreversible Thermodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.
Find full text1938-, Casas-Vázquez J. (José), and Lebon G. (Georgy), eds. Extended irreversible thermodynamics. 4th ed. New York: Springer, 2010.
Find full text1938-, Casas-Vázquez J., and Lebon G, eds. Extended irreversible thermodynamics. 3rd ed. Berlin: Springer, 2001.
Find full textJou, David, and Georgy Lebon. Extended Irreversible Thermodynamics. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3074-0.
Full textJou, David, José Casas-Vázquez, and Georgy Lebon. Extended Irreversible Thermodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97430-4.
Full textJou, David, José Casas-Vázquez, and Georgy Lebon. Extended Irreversible Thermodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-97671-1.
Full textJou, David, José Casas-Vázquez, and Georgy Lebon. Extended Irreversible Thermodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56565-6.
Full text1938-, Casas-Vázquez J., and Lebon G, eds. Extended irreversible thermodynamics. Berlin: Springer, 1993.
Find full textLavenda, Bernard H. Thermodynamics of irreversible processes. New York: Dover, 1993.
Find full textBook chapters on the topic "Irreversible Thermodynamik"
Lauth, Günter Jakob, and Jürgen Kowalczyk. "Irreversible Prozesse." In Thermodynamik, 107–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46229-4_10.
Full textGeller, Wolfgang. "Irreversible Fließprozesse." In Thermodynamik für Maschinenbauer, 245–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10538-2_24.
Full textGeller, Wolfgang. "Irreversible Fließprozesse." In Thermodynamik für Maschinenbauer, 245–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-10539-9_24.
Full textHaase, Rolf. "Entropiebilanz und Vorzeichenaussagen über irreversible Prozesse." In Thermodynamik, 98–103. Heidelberg: Steinkopff, 1985. http://dx.doi.org/10.1007/978-3-642-85352-4_16.
Full textGoeke, Klaus. "Irreversible Prozesse, Transport, Fluktuationen." In Statistik und Thermodynamik, 279–301. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9748-0_8.
Full textMaier, Joachim. "Kinetik und irreversible Thermodynamik." In Teubner Studienbücher Chemie, 264–394. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-80120-3_6.
Full textGeller, Wolfgang. "Irreversible Prozesse in thermischen Maschinen." In Thermodynamik für Maschinenbauer, 260–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10538-2_25.
Full textGeller, Wolfgang. "Irreversible Prozesse in thermischen Maschinen." In Thermodynamik für Maschinenbauer, 260–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-10539-9_25.
Full textLuzzi, Robert, Áurea Rosas Vasconcellos, and José Galvão de Pisapia Ramos. "Irreversible Thermodynamics." In Statistical Foundations of Irreversible Thermodynamics, 13–26. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-80019-0_2.
Full textBergethon, Peter R., and Elizabeth R. Simons. "Irreversible Thermodynamics." In Biophysical Chemistry, 219–24. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3270-4_16.
Full textConference papers on the topic "Irreversible Thermodynamik"
Dai, Zhendong. "An Irreversible Thermodynamic Theory of Friction and Wear." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59024.
Full textHOFFMANN, KARL HEINZ. "OPTIMIZING IRREVERSIBLE THERMODYNAMIC PROCESSES." In 101st WE-Heraeus-Seminar. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503648_0010.
Full textMatsoukas, Themis. "THERMODYNAMICS OF IRREVERSIBLE AGGREGATION." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1797.10608.
Full textStrauss, A. M., and S. W. Peterson. "Irreversible thermodynamics of ATMEC devices." In Space technology and applications international forum - 1998. AIP, 1998. http://dx.doi.org/10.1063/1.54786.
Full textGarcía-Colín, L. S. "Extended Irreversible Thermodynamics: Some unsolved questions." In CAM-94 Physics meeting. AIP, 1995. http://dx.doi.org/10.1063/1.48764.
Full textWang, Jinsong. "Irreversible Thermodynamic Discussions about Ferroelectric Phase Transitions." In 2nd International Conference on Computer and Information Applications (ICCIA 2012). Paris, France: Atlantis Press, 2012. http://dx.doi.org/10.2991/iccia.2012.193.
Full textJou, David, Gian Paolo Beretta, Ahmed Ghoniem, and George Hatsopoulos. "Generalized Transport Equations and Extended Irreversible Thermodynamics." In MEETING THE ENTROPY CHALLENGE: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan. AIP, 2008. http://dx.doi.org/10.1063/1.2979035.
Full textJesudason, Christopher G., and Daniel P. Sheehan. "I. Time Reversibility Concepts, the Second Law and Irreversible Thermodynamics." In SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES. AIP, 2011. http://dx.doi.org/10.1063/1.3665245.
Full textBasaran, Cemal, and Shihua Nie. "Irreversible Thermodynamics for Damage Mechanics of Solid Materials." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32937.
Full textWhaley, P. W. "Critical Entropy Threshold: An Irreversible Thermodynamic Theory of Fatigue." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85435.
Full textReports on the topic "Irreversible Thermodynamik"
Kestin, J. Two studies of nonlinear processes in irreversible thermodynamics. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5137205.
Full textKestin, J. Two studies of nonlinear processes in irreversible thermodynamics. Final report, May 1, 1989--April 30, 1992. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10156131.
Full text