Academic literature on the topic 'IRSA-NOMA'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IRSA-NOMA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "IRSA-NOMA"

1

PAMUKTI, BRIAN, NACHWAN MUFTI ADRIANSYAH, and REYVALDO FAHREZY NILADBRATA. "Evaluasi Coded Random Access untuk Visible Light Communication pada Model Kanal Non-Line Of Sight." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 10, no. 2 (April 12, 2022): 405. http://dx.doi.org/10.26760/elkomika.v10i2.405.

Full text
Abstract:
ABSTRAKPenggunaan Non-Orthogonal Multiple Access (NOMA) pada sistem komunikasi dapat memberi kebebasan bagi user untuk mengirimkan informasi secara bersamaan tanpa harus memperebutkan timeslot ataupun frekuensi. Coded Random Access (CRA) adalah salah satu bagian dari Coded Comain-NOMA (CDNOMA) yang menggunakan kode tanpa ortogonal untuk komunikasi uplink. Terinspirasi dari Additive Links On Line Hawaii Area (ALOHA), kami menggunakan metode Irregular Repetition Slotted ALOHA (IRSA) dengan tiga jumlah slot node dan sembilan degree distribution pada model kanal Line Of Sight (LOS) dan Non-LOS (NLOS). Kami menggunakan metrik pengukuran berupa throughput dan Packet Loss Ratio (PLR) untuk memperoleh hasil simulasi. Dari simulasi yang ekstensif, kami membuktikan bahwa IRSA stabil pada jumlah slot node yaitu 75, 150 dan 300 yang memperoleh throughput di sekitar 0.75 paket/slot.Kata kunci: Coded Random Access, Non-Orthogonal Multiple Access, Slotted ALOHA, Successive Interference Cancellation ABSTRACTThe use of Non-Orthogonal Multiple Access (NOMA) in communication systems can provide users the freedom to transmit information simultaneously without having to fight over timeslots or frequencies. Coded Random Access (CRA) is a part of Coded Domain-NOMA (CD-NOMA) that uses orthogonal code for uplink communication. Inspired by the Additive Links On Line Hawaii Area (ALOHA), we use the Irregular Repetition Slotted ALOHA (IRSA) method with three number of node slots and nine degree distributions on the Line Of Sight (LOS) and Non-LOS (NLOS) channel models. We use measurements in the form of throughput and Packet Loss Ratio (PLR) to obtain simulation results. From extensive simulations, we prove that IRSA is stable on a wide number of node slots of 75, 150 and 300 that acquire throughput in about 0.75 packets/slot.Keywords: Coded Random Access, Non-Orthogonal Multiple Access, Slotted ALOHA, Successive Interference Cancellation
APA, Harvard, Vancouver, ISO, and other styles
2

Babich, Fulvio, Giulia Buttazzoni, Francesca Vatta, and Massimiliano Comisso. "Energy-Constrained Design of Joint NOMA-Diversity Schemes with Imperfect Interference Cancellation." Sensors 21, no. 12 (June 18, 2021): 4194. http://dx.doi.org/10.3390/s21124194.

Full text
Abstract:
This study proposes a set of novel random access protocols combining Packet Repetition (PR) schemes, such as Contention Resolution Diversity Slotted Aloha (CRDSA) and Irregular Repetition SA (IRSA), with Non Orthogonal Multiple Access (NOMA). Differently from previous NOMA/CRDSA and NOMA/IRSA proposals, this work analytically derives the energy levels considering two realistic elements: the residual interference due to imperfect Interference Cancellation (IC), and the presence of requirements on the power spent for the transmission. More precisely, the energy-limited scenario is based on the relationship between the average available energy and the selected code modulation pair, thus being of specific interest for the implementation of the Internet of Things (IoT) technology in forthcoming fifth-generation (5G) systems. Moreover, a theoretical model based on the density evolution method is developed and numerically validated by extensive simulations to evaluate the limiting throughput and to explore the actual performance of different NOMA/PR schemes in energy-constrained scenarios.
APA, Harvard, Vancouver, ISO, and other styles
3

Qin, Sihao, Guangliang Ren, Yuxuan He, and Dandan Guan. "Spatial Group Based NOMA-IRSA with Adaptive Degree Distribution in IoT-Enabled WSNs." IEEE Sensors Journal, 2024, 1. http://dx.doi.org/10.1109/jsen.2024.3465233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramatryana, I. Nyoman Apraz, Gandeva Bayu Satrya, and Soo Young Shin. "Adaptive Traffic Load in IRSA-NOMA Prioritizing Emergency Devices for 6G Enabled Massive IoT." IEEE Wireless Communications Letters, 2021, 1. http://dx.doi.org/10.1109/lwc.2021.3113048.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "IRSA-NOMA"

1

Oueslati, Ibtissem. "Algorithmes d'accès massif pour les objets connectés." Electronic Thesis or Diss., Limoges, 2025. http://www.theses.fr/2025LIMO0021.

Full text
Abstract:
L’évolution rapide des technologies de communication sans fil a introduit de nouveaux défis pour assurer une connectivité massive des dispositifs tout en garantissant une communication fiable et à faible latence. Les réseaux 5G ont introduit divers cas d’usage, notamment mMTC et URLLC. Cependant, avec la transition vers la 6G, la complexité croissante des exigences réseau devrait conduire à l’émergence de nouveaux cas d’usage dépassant ceux définis dans la 5G. L’un de ces cas d’usage nécessite l’intégration des capacités de mMTC et URLLC, donnant naissance à mURLLC, une catégorie de services combinant les exigences d’accès massif de mMTC aux contraintes strictes de latence et de fiabilité de URLLC. Répondre aux exigences de mMTC et mURLLC, qui nécessitent non seulement un accès massif mais aussi une latence ultra-faible et une fiabilité élevée, représente un défi majeur. Cela impose le développement de techniques d’allocation de ressources efficaces. Le travail de recherche commence par une analyse introductive de l’évolution des réseaux sans fil, mettant en évidence les exigences fondamentales de mMTC et mURLLC. Cette étude souligne les défis posés par l’accès massif ainsi que les contraintes strictes de latence et de fiabilité, mettant en avant la nécessité d’utiliser des technologies robustes. Ensuite, la thèse explore les technologies permettant de relever ces défis, notamment NOMA et l’accès GF. De plus, le rôle de l’apprentissage par renforcement dans l’allocation dynamique des ressources est examiné. Cette thèse explore également le potentiel de IRSA en tant que technologie clé pour répondre aux exigences strictes de mURLLC, en particulier lorsqu’il est combiné avec NOMA. L’objectif principal de cette thèse est de concevoir de nouvelles techniques d’allocation de ressources pour répondre aux défis de l’accès massif, en ciblant spécifiquement les exigences de mMTC et mURLLC. La première contribution majeure de cette thèse est le développement d’une technique d’allocation de ressources basée sur GF-NOMA, spécialement conçue pour mMTC. Cette technique, nommé LoCoNOMA, permet aux MTDs de choisir de manière autonome leurs niveaux de puissance et sous-porteuses, en se basant uniquement sur une feedback globale de la station de base gNB. Une borne supérieure analytique pour le taux de succès des paquets a été dérivée et validée en comparant les résultats analytiques et de simulation. Nous démontrons numériquement que la technique proposée surpasse les approches existantes en termes de taux de succès des paquets, de consommation énergétique et de délai de transmission. S’appuyant sur la technique LoCoNOMA, qui a prouvé son efficacité pour l’accès massif dans mMTC, la deuxième contribution majeure de la thèse l’étend afin de répondre aux exigences strictes de latence et de fiabilité de mURLLC, en intégrant l’apprentissage par renforcement. Nous introduisons ainsi QL-GF-NOMA, une approche basée sur Q-Learning, conçue pour minimiser la latence grâce à une fonction objective optimisée. Afin d’améliorer encore davantage les performances de la technique proposée, nous y intégrons IRSA-NOMA, reconnu pour sa robustesse dans la gestion des collisions de paquets. De plus, la fonction objective est encore améliorée pour prendre simultanément en compte les contraintes de latence et de fiabilité. La technique obtenue, nommée QL-IRSA-NOMA, ajuste la distribution des degrés de IRSA-NOMA, garantissant ainsi des performances optimales dans les scénarios mURLLC. Les résultats de simulation montrent que la technique proposée dépasse les approches existantes en termes de fiabilité, de faible latence et d’efficacité énergétique
The rapid evolution of wireless communication technologies has led to new challenges in supporting massive device connectivity while ensuring reliable and low-latency communication. Fifth Generation Mobile Radio (5G) networks have introduced diverse service use cases, including Massive Machine-Type Communications (mMTC) and Ultra-Reliable Low-Latency Communications (URLLC). However, as we transition to- ward the Sixth Generation Mobile Communication (6G), the increasing complexity of network requirements is expected to drive the emergence of new use cases beyond those previously defined in 5G. One such use case requires the integration of both mMTC and URLLC capabilities, giving rise to Massive Ultra-Reliable Low-Latency Communications (mURLLC), a service category that combines the massive access demands of mMTC with the stringent latency and reliability constraints of URLLC. Meeting the requirements of mMTC and mURLLC, which not only demands massive access but also demands stringent low-latency and high-reliability constraints, is a is a complex task. This necessitates efficient resource allocation frameworks. The research journey begins with an introductory overview of the evolution of wire- less networks, focusing on the fundamental requirements of mMTC and mURLLC. It highlights the challenges posed by massive access and the stringent constraints of low latency and high reliability, emphasizing the need for using strong key enablers. Subsequently, the thesis delves into the enabling technologies used to address these challenges, particularly Non-Orthogonal Multiple Access (NOMA) and Grant-Free (GF) access. Additionally, the role of Reinforcement Learning (RL) in dynamic resource allocation is examined.This thesis also explores the potential of Irregular Repetition Slotted ALOHA (IRSA) as a key enabler for achieving the stringent requirements of mURLLC, especially when combined with NOMA ( Irregular Repetition Slotted ALOHA with Non-Orthogonal Multiple Access (IRSA-NOMA)). The core of this thesis focuses on developing novel resource allocation frameworks to address massive access challenges, particularly targeting the requirements of both mMTC and mURLLC. The first major contribution of this thesis is the development of a novel GF-NOMA resource allocation technique specifically designed for mMTC. This framework, named LoCoNOMA, enables Machine-Type Devices (MTDs) to au- tonomously select power levels and sub-carriers while relying only on global feedback from the Next Generation Node B (gNB). An analytical upper bound for the packet success rate was derived, and its accuracy was validated by comparing it with simulation results. We numerically demonstrate that the proposed framework outperforms existing techniques in terms of packet success rate, energy consumption, and transmission delay. Building upon the LoCoNOMA framework, which demonstrated effectiveness in massive access for mMTC, the second contribution extends it to address not only massive access but also the stringent latency and reliability requirements of mURLLC by incorporating Q-Learning. We introduce a distributed multi-agent Q-Learning framework, referred to as QL-GF-NOMA, that prioritizes minimizing delay through a novel objective function. To further enhance the framework and balance both latency and reliability, we extend it further to develop a new framework, QL-IRSA-NOMA, by integrating IRSA-NOMA due to its robustness in mitigating packet collisions. Additionally, we redefine the Q-Learning objective function to jointly address latency and reliability constraints. The framework dynamically adjusts IRSA-NOMA’s degree distribution, ensuring optimal performance under mURLLC requirements. Simulation results demonstrate that the proposed framework outperforms existing techniques in terms of reliability, low latency, and energy consumption
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography