Academic literature on the topic 'Ischemia and reperfusion injury, Creatine/metabolism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ischemia and reperfusion injury, Creatine/metabolism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ischemia and reperfusion injury, Creatine/metabolism"
Tian, Fang, Runzhe Liu, Chaoxin Fan, Yi Sun, Xi Huang, Zongxiu Nie, Xin Zhao, and Xiaoping Pu. "Effects of Thymoquinone on Small-Molecule Metabolites in a Rat Model of Cerebral Ischemia Reperfusion Injury Assessed using MALDI-MSI." Metabolites 10, no. 1 (January 7, 2020): 27. http://dx.doi.org/10.3390/metabo10010027.
Full textSandhu, G. S., A. C. Burrier, and D. R. Janero. "Adenosine deaminase inhibitors attenuate ischemic injury and preserve energy balance in isolated guinea pig heart." American Journal of Physiology-Heart and Circulatory Physiology 265, no. 4 (October 1, 1993): H1249—H1256. http://dx.doi.org/10.1152/ajpheart.1993.265.4.h1249.
Full textSpindler, Matthias, Klaus Meyer, Hinrik Strömer, Andrea Leupold, Ernest Boehm, Helga Wagner, and Stefan Neubauer. "Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis." American Journal of Physiology-Heart and Circulatory Physiology 287, no. 3 (September 2004): H1039—H1045. http://dx.doi.org/10.1152/ajpheart.01016.2003.
Full textJi, Lele, Feng Fu, Lihua Zhang, Wenchong Liu, Xiaoqing Cai, Lei Zhang, Qiangsun Zheng, Haifeng Zhang, and Feng Gao. "Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress." American Journal of Physiology-Endocrinology and Metabolism 298, no. 4 (April 2010): E871—E880. http://dx.doi.org/10.1152/ajpendo.00623.2009.
Full textYoshino, Takuya, Tomohisa Nagoshi, Ryuko Anzawa, Yusuke Kashiwagi, Keiichi Ito, Daisuke Katoh, Masami Fujisaki, et al. "Preconditioning actions of aldosterone through p38 signaling modulation in isolated rat hearts." Journal of Endocrinology 222, no. 2 (June 3, 2014): 289–99. http://dx.doi.org/10.1530/joe-14-0067.
Full textYoshida, Shinichi, Raul Busto, Elena Martinez, Peritz Scheinberg, and Myron D. Ginsberg. "Regional Brain Energy Metabolism after Complete versus Incomplete Ischemia in the Rat in the Absence of Severe Lactic Acidosis." Journal of Cerebral Blood Flow & Metabolism 5, no. 4 (December 1985): 490–501. http://dx.doi.org/10.1038/jcbfm.1985.75.
Full textKaru, Inga, Peeter Tähepöld, Toomas Andres Sulling, Margus Alver, Mihkel Zilmer, and Joel Starkopf. "Off-Pump Coronary Surgery causes Immediate Release of Myocardial Damage Markers." Asian Cardiovascular and Thoracic Annals 17, no. 5 (October 2009): 494–99. http://dx.doi.org/10.1177/0218492309348637.
Full textCastillo, Oscar Arriagada, Gustavo Herrera, Carlos Manriquez, Andrea F. Rojas, and Daniel R. González. "Pharmacological Inhibition of S-Nitrosoglutathione Reductase Reduces Cardiac Damage Induced by Ischemia–Reperfusion." Antioxidants 10, no. 4 (April 2, 2021): 555. http://dx.doi.org/10.3390/antiox10040555.
Full textAoyagi, Toshinori, Jason K. Higa, Hiroko Aoyagi, Naaiko Yorichika, Briana K. Shimada, and Takashi Matsui. "Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion." American Journal of Physiology-Heart and Circulatory Physiology 308, no. 12 (June 15, 2015): H1530—H1539. http://dx.doi.org/10.1152/ajpheart.00008.2015.
Full textJiang, Miaomiao, Jingyu Ni, Yuanlin Cao, Xiaoxue Xing, Qian Wu, and Guanwei Fan. "Astragaloside IV Attenuates Myocardial Ischemia-Reperfusion Injury from Oxidative Stress by Regulating Succinate, Lysophospholipid Metabolism, and ROS Scavenging System." Oxidative Medicine and Cellular Longevity 2019 (June 24, 2019): 1–17. http://dx.doi.org/10.1155/2019/9137654.
Full textDissertations / Theses on the topic "Ischemia and reperfusion injury, Creatine/metabolism"
Almeida, Francine Maria de. "Efeitos da suplementação com creatina na lesão de isquemia e reperfusão após transplante pulmonar unilateral em ratos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/5/5156/tde-15032018-102313/.
Full textIschemia and reperfusion injury (IRI) is an event that can increase the risk of death after lung transplantation (LTx) by activating the innate immune system to induce inflammation. In ischemia events, oxygen supply is below metabolic requirements, resulting in depletion of ATP cellular reserves and increased production of reactive oxygen (ROS) and nitrogen species (RNS). In addition, IRI triggers an intense inflammatory process characterized mainly by the presence of activated neutrophils and macrophages, which release innumerable inflammatory mediators, perpetuating the inflammation. Our initial hypothesis was that creatine supplementation (Cr) could attenuate IRI by increasing phosphocreatine (PCr) levels in cells, which would facilitate the formation of adenosine triphosphate (ATP), promoting the maintenance of intracellular Ca2+ levels, thus discouraging the formation of ROS and, consequently, decreasing the inflammatory process. Therefore, the objective of this study was to evaluate the role of Cr supplementation in the attenuation of IRI in rats underwent to LTx in according to inflammatory, structural and functional aspects of the lung tissue. Sixty Sprague Dawley male rats were distributed into four groups: A90, control / water + 90 minutes of ischemia; Cr90, creatine + 90 minutes of ischemia; A180, control / water + 180 minutes of ischemia; Cr180, creatine + 180 minutes of ischemia. Donor animals received creatine (0.5g/kg/day) daily for five days prior to LTx. Animals in the control group received only the vehicle. The donor`s lung remained in cold ischemia for 90 or 180 minutes and then, were implanted and reperfused during 120 minutes. After reperfusion, respiratory mechanics data were performed and collected samples of exhaled air, arterial and peripheral blood, bronchoalveolar lavage fluid and pulmonary tissue. The parameters evaluated were: airway resistance, resistance and elastance of the pulmonary tissue, exhaled nitric oxide, partial pressure of oxygen and carbon dioxide, serum creatinine, inflammatory cells, edema index, PCNA, Caspase-3, TLR 4 and 7, IL1-beta, IL6, TNF-alpha, IL10, and CINC1. The animals treated with Cr showed an improvement in pulmonary mechanics, serum creatinine levels, and arterial blood gases. In addition, there was a decrease in the exhaled fraction of nitric oxide and in the inflammation in the peripheral blood, BALF, and pulmonary parenchyma in creatine-treated animals. These rats also had a decrease in the proliferation and apoptosis of inflammatory cells, TLR4, IL6, and CINC1. Moreover, there was an increase in the IL10 levels after Cr treatment. We conclude that pre-treatment with Cr has a protective effect on IRI after LTx in rats
Du, Xiaojian. "Regulation of EphA2 expression in renal ischemia-reperfusion injury." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111599.
Full textIn this study, we have further defined the mechanism of Src kinase-induced EphA2 upregulation by identifying the -145/+137 EphA2 promoter region as the minimal region required for basal and Src kinase-induced activation of the promoter. Moreover, we have identified within this region, at position -45, a canonical cAMP response element (CRE) (Nowakowski et al.), which is essential for EphA2 promoter activation. However, we also found that the prototypical CRE-binding transcription factor, CREB, was not necessary for activation of the EphA2 promoter, suggesting that CREB-related or -unrelated transcription factors are responsible for EphA2 upregulation.
Westman, Bo. "Studies of ischemia and reperfusion in muscle and liver on glutathione and amino acid metabolism in man /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-406-8/.
Full textHuo, Jiuzhou. "Regulation of Mitochondrial Calcium Dynamics in Striated Muscle Function." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595846761184679.
Full textMaarman, Gerald Jerome. "The effect of CPT-1 inhibition on myocardial function and resistance to ischemia/reperfusion injury in a rodent model of the metabolic syndrome." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5354.
Full textENGLISH ABSTRACT: Background: Obesity is associated with dyslipidemia, insulin resistance and glucose intolerance and together these components characterise the metabolic syndrome (Dandona et al. 2005). In the state of obesity, there are high levels of circulating free fatty acids and increased rates of fatty oxidation which inhibit glucose oxidation. This: (i) reduce the heart‘s contractile ability, (ii) exacerbates ischemic/reperfusion injury and (iii) decreases cardiac mechanical function during reperfusion (Kantor et al. 2000; Liu et al. 2002; Taegtmeyer, 2000). Aim: The aim of our study was to investigate the effect of inhibiting fatty acid oxidation, with oxfenicine (4-Hydroxy-L-phenylglycine), on (i) cardiac mechanical function, (ii) mitochondrial respiration, (iii) myocardial tolerance to ischemia/reperfusion injury, (iv) CPT-I expression, MCAD expression, IRS-1 activation, total GLUT- 4 expression and (v) the RISK pathway (ERK42/44 and PKB/Akt). Methods: Male Wistar rats were fed a control rat chow diet or a high calorie diet (HCD) for 16 weeks. The HCD caused diet induced obesity (DIO). The animals were randomly divided into 4 groups [Control, DIO, Control + oxfen and DIO + oxfen]. The drug was administered for the last 8 weeks of feeding (200mg/kg/day). Animals were sacrificed and the hearts were perfused on the Langendorff perfusion system. After being subjected to regional ischemia and two hours of reperfusion, infarct size was determined. A separate series of animals were fed and/or treated and hearts were collected after 25 minutes global ischemia followed by 30 min reperfusion for determination of GLUT- 4, CPT-1, IRS -1, MCAD, ERK (42/44) and PKB/Akt expression/phosphorylation using Western blot analysis. A third series of hearts were excised and used for the isolation of mitochondria. Results: In the DIO rats, chronic oxfenicine treatment improved cardiac mechanical function by improving mitochondrial respiration. Oxfenicine inhibited CPT-1 expression but had no effect on MCAD or GLUT- 4 expression. Oxfenicine decreased IRS-1 iv expression, but not IRS-1 activation. Oxfenicine also improved myocardial tolerance to ischemia/reperfusion without activation of the RISK pathway (ERK & PKB). In the control rats, chronic oxfenicine treatment worsened cardiac mechanical function by adversely affecting mitochondrial respiration. Oxfenicine also worsened myocardial tolerance to ischemia/reperfusion in the control rats without changes in the RISK pathway (ERK & PKB). Oxfenicine had no effect on CPT-1, MCAD or GLUT- 4 expression. Oxfenicine increased IRS-1 expression, but not IRS-1 activity. Conclusion: Chronic oxfenicine treatment improved cardiac mechanical function and myocardial resistance to ischemia/reperfusion injury in obese animals, but worsened it in control animals. The improved cardiac mechanical function and tolerance to ischemia/reperfusion injury may be due to improvement in mitochondrial respiration.
AFRIKAANSE OPSOMMING: Agtergrond: Vetsug word geassosieer met dislipidemie, insulien weerstandigheid en glukose intoleransie, wat saam die metaboliese sindroom karakteriseer (Dandona et al. 2005). Met vetsug is daar ‗n hoë sirkulasie van vetsure, sowel as verhoogde vertsuur oksidasie wat gevolglik glukose oksidasie onderdruk. Dit: (i) verlaag die hart se vermoë om saam te trek, (ii) vererger isgemiese/herperfusie skade en (iv) verlaag kardiale effektiwiteit gedurende herperfusie (Kantor et al. 2000; Liu et al. 2002; Taegtmeyer, 2000). Doel: Die doel van die studie was om die effekte van vetsuur onderdrukking m.b.v. oksfenisien (4-Hidroksie-L-fenielglisien) op (i) meganiese hart funksie, (ii) mitokondriale respirasie, (iii) miokardiale toleransie teen isgemiese/herperfusie skade, (iv) CPT-I uitdrukking, MCAD uitdrukking, IRS-1 aktiwiteit, totale GLUT-4 uitdrukking en (v) die RISK pad (ERK42/44 en PKB/Akt) te ondersoek. Metodes: Manlike Wistar rotte was gevoer met ‗n kontrole rot dieet of ‗n hoë kalorie dieet (HKD) vir 16 weke. Die HKD lei tot dieet-geïnduseerde vetsug (DGV). Die diere was lukraak verdeel in 4 groepe [kontrole, DGV, kontrole + oksfen en DGV + oksfen]. Die behandeling met die middel was toegedien vir die laaste 8 weke van die voeding protokol (200mg/kg/dag). Die diere was geslag en die harte was geperfuseer op die Langendorff perfusie sisteem. Na blootstelling aan streeks- of globale isgemie en 2 ure herperfusie was infark groottes bepaal. ‗n Aparte reeks diere was gevoer en/of behandel en die harte was versamel na 25 minute globale isgemie gevolg deur 30 minute herperfusie vir die bepaling van GLUT-4, CPT 1, IRS -1, MCAD, ERK (42/44) en PKB/Akt uitdrukking/aktivering d.m.v. Western blot analise. ‗n Derde reeks diere was gebruik vir die isolasie van mitokondria. Resultate: In die DGV diere, het kroniese oksfenisien behandeling meganiese hart funksie verbeter d.m.v. die verbetering van mitokondriale respirasie. Oksfenisien het CPT-1 uitdrukking verlaag terwyl GLUT- 4 en MCAD uitdrukking nie geaffekteer was vi nie. Oksfenisien het IRS-1 uitdrukking verlaag, maar nie IRS-1 aktiwiteit nie. Oksfenisien het ook miokardiale weerstand teen isgemiese/herperfusie verbeter met sonder aktivering van die RISK pad (ERK & PKB). In die kontrole diere, het kroniese oksfenisien behandeling die meganiese hart funksie versleg d.m.v. negatiewe effekte op mitokondriale respirasie. Oksfenisien het die miokardiale weerstand teen isgemiese/herperfusie van die kontrole rotte versleg sonder veranderinge in die RISK pad (ERK & PKB). Oksfenisien het geen effek gehad op CPT-1, MCAD en GLUT-4 uitdrukking nie. Oksfenisien het IRS-1 uitdrukking verhoog, maar nie IRS-1 aktiwiteit nie. Samevatting: Kroniese oksfenisien behandeling het die meganiese hart funksie en miokardiale weerstand teen isgemiese/herperfusie skade in die vet diere verbeter, maar versleg in die kontrole diere. Hierdie verbetering van meganiese hart funksie en weerstand teen isgemiese/herperfusie skade kon dalk wees a.g.v. ‗n verbetering in mitokondriale respirasie.
Alves, Marcos AntÃnio. "Efeitos da l-alanil-glutamina sobre as concentraÃÃes in vivo de metabÃlitos em ratos submetidos à isquemia-reperfusÃo do membro pÃlvico esquerdo." Universidade Federal do CearÃ, 2005. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=195.
Full textInstituto Dr. Josà Frota
Foram investigados os efeitos metabÃlicos da L-alanil-glutamina nas concentraÃÃes sanguÃneas e teciduais dos metabÃlitos (piruvato, lactato, glicose, acetoacetato, 3-hidroxibutirato, corpos cetÃnicos e ATP) em ratos Wistar submetidos à isquemia/reperfusÃo do membro pÃlvico. Utilizaram-se 96 ratos adultos, machos, distribuÃdos aleatoriamente em 4 grupos numericamente iguais e prÃ-tratados com soluÃÃo salina 2,0 mL (G-1 e G-3) ou L-alanil-glutamina 0,75 g Kg-1(G-2 e G-4), durante 7 dias. Uma hora apÃs a Ãltima gavagem, todos os ratos foram submetidos ao pinÃamento da artÃria ilÃaca esquerda ou operaÃÃo simulada. ApÃs 3 horas a pinÃa foi removida; nos grupos simulados realizou-se nova intervenÃÃo cirÃrgica. Amostras (mÃsculo, fÃgado, rim e sangue) foram coletadas ao final da isquemia mÃxima (T-0) e durante a reperfusÃo (1, 3 e 6h). Os metabÃlitos foram determinados por ensaio enzimÃtico e expressos como MÃdia  E.P.M. Testes nÃo paramÃtricos (Mann-Whitney e Kruskal-Wallis/Dunn) foram utilizados para a anÃlise estatÃstica. O nÃvel de significÃncia foi de p<0,05. NÃo foi evidenciada elevaÃÃo nas concentraÃÃes de lactato, piruvato e glicose durante a lesÃo de isquemia ou reperfusÃo, comparando-se os grupos tratados com soluÃÃo salina (G-1 vs. G-2). Por outro lado houve reduÃÃo nas concentraÃÃes de corpos cetÃnicos em tecido muscular no tempo de isquemia mÃxima e hiperglicemia durante o perÃodo de reperfusÃo. Houve elevaÃÃo nas concentraÃÃes hepÃticas de lactato e glicose muscular e reduÃÃo de lactato no mesmo tecido, nos ratos prÃ-tratados com o dipeptÃdeo. Observou-se ainda, nos mesmos animais, elevaÃÃo das concentraÃÃes de corpos cetÃnicos no fÃgado, no sangue, no mÃsculo e nas concentraÃÃes renais de lactato. Conclui-se, portanto, que o modelo de pinÃamento da artÃria ilÃaca esquerda promove alteraÃÃes metabÃlicas decorrentes da lesÃo de isquemia/reperfusÃo. O dipeptÃdeo L-ALA-GLN induz aumento nas concentraÃÃes hepÃticas de lactato, promove elevaÃÃo de glicose muscular e reduÃÃo de lactato no mesmo tecido indicando aumento no âturn overâ de glicose. O dipeptÃdeo causou aumento da cetogÃnese, cetonemia e captaÃÃo de corpos cetÃnicos durante a reperfusÃo, assim como hiperlactacemia e aumento nas concentraÃÃes renais de lactato. Maior atividade glicolÃtica em tecidos perifÃricos, via ativaÃÃo do ciclo malato-aspartato, levou a diminuiÃÃo da resistÃncia insulÃnica com possÃvel queda de insulinemia, com aumento da cetogÃnese.
A study has been conducted to investigate the effects of L-alanyl-glutamine upon blood and tissue concentrations of metabolites (pyruvate, lactate, glucose, acetoacetato, 3-hydroxybutyrate, ketone bodies and ATP) in Wistar rats subjected to ischemia/reperfusion of hind limb. Ninety-six adult male rats were randomized in 4 groups and pre-treated with saline 2.0 mL (G-1,G-3) or L-alanyl-glutamine solution 0.75 mgKg-1(G-2, G-4) during 7 days. One-hour after the last gavage all rats were submitted to clamping of the left iliac artery or sham operation. The clamp was removed after 3 h; sham rats were operated once more. Muscle, liver, kidney and blood samples were collected at the end of ischemia and at 1-3-6 h during reperfusion. Metabolites were submitted to enzymatic analyses. Results were expressed as Mean  S.E.M. Non-parametric tests (Mann-Whitney and Kruskal-Wallis/Dunn) were utilized for statistical analyses. P<0.05 was accepted as significant. Lactate, pyruvate and glucose concentrations did not increase during ischemia or reperfusion in rats pre-treated with saline (G-1 vs. G-2). On the other hand ketone bodies concentrations were decreased in T-0 and blood glucose was elevated during reperfusion. Liver lactate and muscle glucose were increased and lactate concentration was decreased in L-alanyl-glutamine pre-treated rats. Ketone bodies were elevated in the liver, muscle and blood and renal lactate was also elevated in the aforementioned rats. It is concluded that the model utilized in this study promotes significant metabolic alterations due to ischemia/reperfusion injury. L-Ala-Gln dipeptide induced increased hepatic lactate and muscle glucose concentrations and decreased of muscle lactate concentrations point out to increased turnover of glucose. L-Ala-Gln also induced increased ketogenesis, ketonemia and ketone bodies uptake during reperfusion along with increased lactacidemia and kidney lactate concentrations. Increased glycolytic activity in peripheral tissues via malate-aspartate shuttle activation lead to decreased insulin resistance with possible decrease in plasma insulin levels and increased ketogenesis.
Wasková, Petra. "Úloha mitochondriální kreatinkinázy a hexokinázy v mechanismech kardioprotektivního působení chronické hypoxie." Doctoral thesis, 2014. http://www.nusl.cz/ntk/nusl-338114.
Full textBooks on the topic "Ischemia and reperfusion injury, Creatine/metabolism"
František, Kolář, ed. Cardiac ischemia: From injury to protection. Boston: Kluwer Academic Publishers, 1999.
Find full textOstadal, Bohuslav. Cardiac ischemia: From injury to protection. Boston: Kluwer Academic Publishers, 1999.
Find full textH, Opie Lionel, ed. Stunning, hibernation, and calcium in myocardial ischemia and reperfusion. Boston: Kluwer Academic, 1992.
Find full text(Editor), Bohuslav Ost'ádal, and Frantisek Kolár (Editor), eds. Cardiac Ischemia: - From Injury to Protection (Basic Science for the Cardiologist). Springer, 1999.
Find full textBook chapters on the topic "Ischemia and reperfusion injury, Creatine/metabolism"
Bauer, Ph, F. Belleville-Nabet, E. Vauthier, C. Colin, F. Dubois, J. C. Guédenet, O. Bodenreider, et al. "Metabolism of Selenium in a Model of Mesenteric Ischemia-Reperfusion Injury." In Therapeutic Uses of Trace Elements, 229–32. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0167-5_39.
Full textElimban, Vijayan, Paramjit S. Tappia, and Naranjan S. Dhalla. "Defects in Mitochondrial Oxidative Phosphorylation in Hearts Subjected to Ischemia-Reperfusion Injury." In Cardiac Energy Metabolism in Health and Disease, 183–97. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1227-8_12.
Full textBrown, David I., Monte S. Willis, and Jessica M. Berthiaume. "Influence of Ischemia-Reperfusion Injury on Cardiac Metabolism." In The Scientist's Guide to Cardiac Metabolism, 155–67. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-802394-5.00011-x.
Full textDomaski, Leszek, Karolina Koda, and Kazimierz Ciechanowski. "Ischemia-Reperfusion Injury in the Transplanted Kidney Based on Purine Metabolism Markers and Activity of the Antioxidant System." In Organ Donation and Transplantation - Public Policy and Clinical Perspectives. InTech, 2012. http://dx.doi.org/10.5772/32075.
Full textConference papers on the topic "Ischemia and reperfusion injury, Creatine/metabolism"
De Almeida, Francine Maria, Angela da Silva Battochio, João Vitor Pithon Napoli, Katiusa Abreu Alves, Manoel Carneiro de Oliveira-Junior, Henrique Takachi Moriya, Paulo Manuel Pêgo-Fernandes, Rodolfo de Paula Vieira, Rogerio Pazetti, and Grace Balbin Silva. "Creatine supplementation attenuates ischemia-reperfusion injury in lung transplantation." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa1545.
Full text