Academic literature on the topic 'Isomaltose'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Isomaltose.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Isomaltose":

1

Lee, Hyeon Cheol, Jin Ha Kim, Sang Yong Kim, and Jung Kul Lee. "Isomaltose Production by Modification of the Fructose-Binding Site on the Basis of the Predicted Structure of Sucrose Isomerase from “Protaminobacter rubrum”." Applied and Environmental Microbiology 74, no. 16 (June 13, 2008): 5183–94. http://dx.doi.org/10.1128/aem.00181-08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACT “Protaminobacter rubrum” sucrose isomerase (SI) catalyzes the isomerization of sucrose to isomaltulose and trehalulose. SI catalyzes the hydrolysis of the glycosidic bond with retention of the anomeric configuration via a mechanism that involves a covalent glycosyl enzyme intermediate. It possesses a 325RLDRD329 motif, which is highly conserved and plays an important role in fructose binding. The predicted three-dimensional active-site structure of SI was superimposed on and compared with those of other α-glucosidases in family 13. We identified two Arg residues that may play important roles in SI-substrate binding with weak ionic strength. Mutations at Arg325 and Arg328 in the fructose-binding site reduced isomaltulose production and slightly increased trehalulose production. In addition, the perturbed interactions between the mutated residues and fructose at the fructose-binding site seemed to have altered the binding affinity of the site, where glucose could now bind and be utilized as a second substrate for isomaltose production. From eight mutant enzymes designed based on structural analysis, the R325Q mutant enzyme exhibiting high relative activity for isomaltose production was selected. We recorded 40.0% relative activity at 15% (wt/vol) additive glucose with no temperature shift; the maximum isomaltose concentration and production yield were 57.9 g liter−1 and 0.55 g of isomaltose/g of sucrose, respectively. Furthermore, isomaltose production increased with temperature but decreased at a temperature of >35°C. Maximum isomaltose production (75.7 g liter−1) was recorded at 35°C, and its yield for the consumed sucrose was 0.61 g g−1 with the addition of 15% (wt/vol) glucose. The relative activity for isomaltose production increased progressively with temperature and reached 45.9% under the same conditions.
2

Porcayo Loza, Javier, Anna Chailyan, Jochen Forster, Michael Katz, Uffe Hasbro Mortensen, and Rosa Garcia Sanchez. "Improving the Utilization of Isomaltose and Panose by Lager Yeast Saccharomyces pastorianus." Fermentation 7, no. 3 (July 7, 2021): 107. http://dx.doi.org/10.3390/fermentation7030107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Approximately 25% of all carbohydrates in industrial worts are poorly, if at all, fermented by brewing yeast. This includes dextrins, β-glucans, arabinose, xylose, disaccharides such as isomaltose, nigerose, kojibiose, and trisaccharides such as panose and isopanose. As the efficient utilization of carbohydrates during the wort’s fermentation impacts the alcohol yield and the organoleptic traits of the product, developing brewing strains with enhanced abilities to ferment subsets of these sugars is highly desirable. In this study, we developed Saccharomyces pastorianus laboratory yeast strains with a superior capacity to grow on isomaltose and panose. First, we designed a plasmid toolbox for the stable integration of genes into lager strains. Next, we used the toolbox to elevate the levels of the α-glucoside transporter Agt1 and the major isomaltase Ima1. This was achieved by integrating synthetic AGT1 and IMA1 genes under the control of strong constitutive promoters into defined genomic sites. As a result, strains carrying both genes showed a superior capacity to grow on panose and isomaltose, indicating that Ima1 and Agt1 act in synergy to consume these sugars. Our study suggests that non-GMO strategies aiming to develop strains with improved isomaltose and panose utilization could include identifying strains that overexpress AGT1 and IMA1.
3

Jones, Kyra, and David Rose. "Substrate selectivity of C-terminal sucrase isomaltase and maltase glucoamylase." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C813. http://dx.doi.org/10.1107/s2053273314091864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Carbohydrates make up a significant component of the human diet. One approach to controlling blood glucose and serum insulin levels in individuals with type II diabetes is inhibition of intestinal α-glucosidases and pancreatic α-amylases. Two intestinal α-glucosidases, sucrase isomaltase (SI) and maltase glucoamylase (MGAM), are responsible for the final step of starch hydrolysis in mammals in the small intestine: the release of free glucose. Each enzyme consists of two catalytic subunits: N-terminal sucrase isomaltase (ntSI) and C-terminal sucrase isomaltose (ctSI); and N-terminal maltase glucoamylase (ntMGAM) and C-terminal maltase glucoamylase (ctMGAM). Here, residues hypothesized to impact substrate specificity of ctSI and ctMGAM will be presented, enhancing our understanding of the functionality of these enzymatic subunits as well as their overlapping substrate specificity.
4

Ichikawa, Takanori, Mizuki Tanaka, Takayasu Watanabe, Sitong Zhan, Akira Watanabe, Takahiro Shintani, and Katsuya Gomi. "Crucial role of the intracellular α-glucosidase MalT in the activation of the transcription factor AmyR essential for amylolytic gene expression in Aspergillus oryzae." Bioscience, Biotechnology, and Biochemistry 85, no. 9 (July 10, 2021): 2076–83. http://dx.doi.org/10.1093/bbb/zbab125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACT We examined the role of the intracellular α-glucosidase gene malT, which is part of the maltose-utilizing cluster (MAL cluster) together with malR and malP, in amylolytic gene expression in Aspergillus oryzae. malT disruption severely affected fungal growth on medium containing maltose or starch. Furthermore, the transcription level of the α-amylase gene was significantly reduced by malT disruption. Given that the transcription factor AmyR responsible for amylolytic gene expression is activated by isomaltose converted from maltose incorporated into the cells, MalT may have transglycosylation activity that converts maltose to isomaltose. Indeed, transglycosylated products such as isomaltose/maltotriose and panose were generated from the substrate maltose by MalT purified from a malT-overexpressing strain. The results of this study, taken together, suggests that MalT plays a pivotal role in AmyR activation via its transglycosylation activity that converts maltose to the physiological inducer isomaltose.
5

Bock, Klaus, Troels Skrydstrup, and Susanne Refn. "Synthesis Of Isomaltose Analogues." Journal of Carbohydrate Chemistry 10, no. 6 (January 1991): 969–80. http://dx.doi.org/10.1080/07328309108543966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kitagawa, Noriaki, Hikaru Watanabe, Tetsuya Mori, Tomoyuki Nishimoto, Hajime Aga, Shimpei Ushio, and Koryu Yamamoto. "Efficient production of isomaltose and isomaltooligosaccharides from starch using 1,4-α-glucan 6-α-glucosyltransferase and isopullulanase." Bioscience, Biotechnology, and Biochemistry 85, no. 12 (October 8, 2021): 2450–58. http://dx.doi.org/10.1093/bbb/zbab173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACT We attempted to develop an efficient method for producing isomaltose, a disaccharide consisting of an α-(1→6)-linkage, from starch by combining enzymes of known activity. We found that the combination of 1,4-α-glucan 6-α-glucosyltransferase from Bacillus globisporus N75 and isopullulanase from Aspergillus brasiliensis ATCC 9642 led to the efficient synthesis of isomaltose. Inclusion of isoamylase and cyclomaltodextrin glucanotransferase resulted in increased efficiency, with production yields exceeding 70%. Furthermore, we considered that isomaltooligosaccharides could be synthesized from starch by combining 1,4-α-glucan 6-α-glucosyltransferase from Paenibacillus sp. PP710 and isopullulanase. In reactions that additionally utilized isoamylase and α-amylase, the total concentration of product, which included a series of isomaltooligosaccharides from isomaltose to isomaltodecaose, was 131 m m, and the ratio of 6-linked glucopyranosyl bonds to all bonds was 91.7% at a substrate concentration of 10%. The development of these manufacturing methods will accelerate the industrial production of isomaltose and isomaltooligosaccharides.
7

Duong, Quan Hong, Tri Minh Hoàng, An Duy Tuyên, Trang Thu Vu, and Nga Hong Luong. "Effect of some factors on the hydrolysis process of sweet potat starch by spezyme alpha to produce isomaltooligosaccharide (IMO)." Vietnam Journal of Science and Technology 60, no. 2 (April 21, 2022): 191–202. http://dx.doi.org/10.15625/2525-2518/14797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Isomalto-oligosacarides (IMOs) a mixture of glucooligosaccharides linked by α- (1 → 6) and/or a low proportion of α- (1 → 3) (nigerooligosaccharide) or α- ( 1 → 2) glycosidic bonds (kojioligosaccharide) included glucose oligomers linked together by α-D- (1,6) glycoside bonds such as: isomaltose, panose, isomaltotetose, isomaltotetose. IMO is considered as prebiotics found in several traditional foods such as rice miso, soybean sauce and sake, etc… In this article, the effect of some factors on hydrolysis of sweet potato starch by Spezyme Alpha to form oligossacharide with DP 2-6 before being branched were studied.
8

Kekeçoğlu, Meral, Tuğçe Çaprazlı, Emel Çalışkan, and Serpil Uğraş. "Determination of Therapeutic Values of Düzce/Yığılca Honeys by Underlining Overlooked Parameters." Turkish Journal of Agriculture - Food Science and Technology 10, no. 2 (March 3, 2022): 299–308. http://dx.doi.org/10.24925/turjaf.v10i2.299-308.4823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this study, we aimed to determine the therapeutic value of local Yığılca honeys by examining their physicochemical characteristics, phenolic content, radical scavenging activity, and antimicrobial properties by underlining some overlooked parameters. Honey samples ware divided into two main groups as CH and FH based on melissopalynologycal analysis. Antimicrobial activity of collected honey samples were investigated on important hospital-acquired infections bacteria strains; MRSA (Methicillin-resistant Staphylococcus aureus), MSSA (Methicillin-sensitive Staphylococcus aureus), Escherichia coli, and Acinetobacter baumannii. Although CH’s antimicrobial activities were found slightly higher than the FH’s, there isn’t statistically significant differences between two type honeys. However, the antioxidant activity of CH was found significantly higher than FH. Surprisingly, a higher amount of isomaltose was determined in addition to the total phenolic content in CH compared to FH. There has been found positive correlation between isomaltose amount and zone diameters for MRSA and A. baumannii. We would like to draw attention to isomaltose for its health benefit structure since these parameters may be influence honey’s therapeutic value. We recommend that isomaltose and invertase enzyme should be included in to the honey codex standards suitably depending on the monofloral and multifloral honey’s specific structure, to sensitively standardize and control their quality and therapeutic value. Our data revealed a positive correlation between antioxidant and antimicrobial activity and total phenolic content and higher isomaltose amount.
9

Kelly, Catherine T., Mary Giblin, and William M. Fogarty. "Resolution, purification, and characterization of two extracellular glucohydrolases, α-glucosidase and maltase, of Bacillus licheniformis." Canadian Journal of Microbiology 32, no. 4 (April 1, 1986): 342–47. http://dx.doi.org/10.1139/m86-066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Two extracellular α-glucosidases (EC 3.2.1.20, α-D-glucoside glucohydrolase) of Bacillus licheniformis NCIB 8549 were separated, purified, and partially characterized. Resolution of the complex into two separate enzymes was achieved using Sephadex G-150. The first of these activities, a maltase, hydrolysed maltose preferentially. It had slight activity on isomaltose, p-nitrophenyl-α-D-glycopyranoside, and sucrose. The pH optimum was 6.0 and the molecular weight determined on Sephadex G-200 was 160 000. This enzyme did not display any transglucosylation activity. The second enzyme was an α-glucosidase. It displayed highest activity on p-nitrophenyl-α-D-glucopyranoside, followed by isomaltose, sucrose, and maltose. As with the maltase, the pH optimum was 6.0 and the molecular weight as determined on Sephadex G-150 was 66 000. With isomaltose and maltotriose as substrates, transglucosylation activity was evident.
10

Muzammil, Mahreen, Kashif Aziz, Muhammad Ehteram ul Haq, and Nosheen Nasir. "Iron III isomaltose induced hypersensitivity reaction." BMJ Case Reports 12, no. 10 (October 2019): e228596. http://dx.doi.org/10.1136/bcr-2018-228596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Iron isomaltose is considered as safe form of iron with no test dose recommended. Here, we are describing the case of a patient who experienced allergic reaction with this formulation of iron. A 35-year-old South Asian woman experienced allergic reaction, she had mild wheeze on examination of chest. She was given intranasal oxygen at 2 L/min. She was given intravenous acetaminophen 1 g for pain relief, 45.4 mg intravenous chlorphenaramine and intravenous 100 mg hydrocortisone. Within half an hour, all her symptoms improved and her hypoxia resolved. Her chest wheezing also disappeared. Iron isomaltose, although relatively safe, can cause allergic reaction. Intravenous iron can cause allergic reaction therefore it should be administered at the facility where trained staff is present so that necessary treatment can be given in case of hypersensitivity reaction.

Dissertations / Theses on the topic "Isomaltose":

1

Deng, Xu. "Biochemical and enzymological characterization of an isomaltase family in the yeast Saccharomyces cerevisiae." Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0007/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La levure Saccharomyces cerevisiae est capable d’utiliser une grande variété de sucres comme source de carbone et d’énergie. La plupart des enzymes impliquées dans l’utilisation de ces sucres sont codées par des gènes issus de familles multigéniques. C’est le cas de la famille IMA identifiée comme impliquée dans l’utilisation de l’isomaltose. Cette famille comprend cinq gènes qui codent pour quatre isomaltases partageant une forte identité de séquence (de 65% à 100 %). Dans ce travail , la diversitéfonctionnelle de la famille IMA a été étudiée, en caractérisant de façon exhaustive in vitro leurs propriétés biochimiques et enzymologiques. Ima1p et Ima2p possèdent des propriétés biochimiques identiques (pH, température, et thermostabilité) mais Ima3p se distingue par rapport à ces deux protéines bien que n’ayant que trois acides de différence avec Ima2p (thermostabilité plus faible). Ima5p quant à elle, est la protéine la plus dissemblable (température optimale plus faible et demi-vie basse dès 37°C). Les quatre isomaltases sont cependant très sensibles au Tris et aux ions Fe3+. Les quatre isoenzymes présentent une préférence pour les disaccharides liés en α-1,6 (isomaltose et palatinose), avec une cinétique de type Michaëlis-Menten et une inhibition par le substrat à une concentration élevée. Les isomaltases Imap sont cependant aussi capables d'hydrolyser les disaccharides α-1,2, α-1,3 et α-1,5 ainsi que les trisaccharides portant une liaison α-1,6, ce qui met en évidence leur ambiguïté de substrat .Nos résultats ont toutefois montré de nombreuses singularités dans cette famille de protéines. Alors que Ima1p et Ima2p présentent des propriétés très semblables, l’activité catalytique de Ima3p est globalement très faible malgré sa forte ressemblance avec Ima2p. Le variant Ima3p_R279Q retrouve des niveaux d'activité proches de ceux d’Ima2p, tandis que la substitution d’une leucine par une proline à la position 240 a permis d’augmenter de manière significative la stabilité d’Ima3p confirmant le rôle des prolines dans la thermostabilité des protéines. L’hydrolyse de l’isomaltose par Ima5p réfute lesconclusions précédemment publiées sur l'exigence d'acides aminés spécifiques pour déterminer la spécificité de α-1,6 puisque le variant IMA5-MQH ne permet pas de restaurer une activité semblable à Ima1p malgré la présence des trois résidus MQH. Nous avons également trouvé qu’Ima5p est inhibé par le maltose suivant une inhibition mixte tandis qu’Ima1p est inhibée de façon compétitive à faible concentration et de manière incompétitive à forte concentration en isomaltose
Most enzymatic systems for sugar uptake and assimilation rely on multigene families in theyeast Saccharomyces cerevisiae. The IMA / MAL family has been used as a model system to study themolecular mechanisms that govern evolution of duplicated genes. The five IMA multigene familymembers encode four isomaltases sharing high sequence identity from 65% to 99%, of which IMA3and IMA4 are 100% identical to encode the same isomaltase. In this work, the functional diversity ofIMA family was further explored, with exhaustive in-vitro characterization of their biochemical andenzymological properties.Ima1p and Ima2p were similar to biochemical properties; Ima3p showed some differences fromthe two proteins; amongst them, Ima5p was the most distant protein. The four isomaltases were highlysensitive to Tris and Fe3+, but were unaffected by the addition or the removal of Ca2+ despiteconservation of the calcium binding site. Besides, four isoenzymes exhibited a preference for the α-(1,6)disaccharides isomaltose and palatinose, with Michaelis-Menten kinetics and inhibition at highsubstrates concentration. They were also able to hydrolyse trisaccharides bearing an α-(1,6) linkage,but also α-(1,2), α-(1,3) and α-(1,5) disaccharides including sucrose, highlighting their substrateambiguity. While Ima1p and Ima2p presented almost identical characteristics, the results neverthelessshowed many singularities within this protein family. In particular, Ima3p presented lower activitiesthan Ima2p despite only 3 different amino acids between these two isoforms. The Ima3p_R279Qvariant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240significantly increased the stability of Ima3p and supported the role of prolines inthermostability.Ima5p presented the lower optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specificamino acids for determining the specificity for α-(1,6) substrates. We finally found a mixed inhibitionby maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitiveat very low isomaltose concentrations and uncompetitive as the substrate concentration increased.The presented Ph.D’s work provided preliminary insights into determining structural factorswithin this family, exemplifying for example the role of proline residues for thermosability. Moreover,it was illustrated that a gene family encoding proteins with strong sequence similarities can lead toenzyme with notable differences in biochemical and enzymological properties
2

PERRIN, ELISABETH. "Synthese d'analogues carbones de glucoglycerolipides (c-glucoglycerolipides et kerufaride) et de disaccharides 5(c-isomaltose et c-gentobiose)." Paris 6, 1996. http://www.theses.fr/1996PA066324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'objectif de ces travaux est de developper de nouvelles voies de synthese d'analogues carbones de glucoglycerolipides et de disaccharides. Synthese de c-glucoglycerolipides: ce sont des analogues de glucoglycerolipides dans lesquels l'oxygene aglyconique est remplace par un groupe methylene. Trois approches sont etudiees pour former la liaison c-glycosidique: - une approche radicalaire intramoleculaire, - une approche radicalaire intermoleculaire, - une approche nucleophile. L'approche nucleophile par l'intermediaire d'un c-alcynylglucoside est la meilleure methode pour obtenir des c-glucoglycerolipides. Synthese de c-disaccharides: une approche radicalaire intramoleculaire permet de synthetiser de facon rapide et simple des c-disaccharides, analogues de o-disaccharides dans lesquels l'oxygene interglycosidique est remplace par un pont methylene. Un lien temporaire relie le donneur de radical avec l'accepteur. La macrocyclisation radicalaire par action de l'hydrure de tributyletain en presence d'aibn conduit a la formation du c-disaccharide. Nous avons demontre l'importance de la position d'agrafage sur le rendement et l'orientation stereochimique de la reaction. Synthese du keruffaride: la partie sucre de ces analogues de glucoglycerolipides est remplacee par un cyclopentane pentahydroxyle. Nous avons developpe une nouvelle methode de synthese de cylopentanes polyhydroxyles par un couplage pinacolique par l'iodure de samarium. Cette methode nous a permis de synthetiser le keruffaride et ainsi de confirmer par la synthese la stereochimie relative de ce produit naturel
3

Hübner, Britta. "Herstellung von Tensiden durch Aminierung von Isomaltulose." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976589052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sanchayan, Ragunathan. "Bioabbaubare Tenside durch reduktive Aminierung von Isomaltulose." Phd thesis, [S.l. : s.n.], 2005. https://tuprints.ulb.tu-darmstadt.de/586/1/Dissertation.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Die vorliegende Arbeit behandelt die heterogen katalysierte reduktive Aminierung von Isomaltulose mit n-Dodecylamin. Ziel der Arbeit ist die Entwicklung eines technischen Verfahrens zur Herstellung bioabbaubarer Tenside aus Nachwachsenden Rohstoffen. Die früheren Untersuchungen haben gezeigt, dass diese Reaktion unter Verwendung eines Palladium-Aktivkohle-Suspensionkatalysators viel versprechende Umsätze und Selektivitäten aufwies. Das Haupthindernis einer technischen Realisierung des Verfahrens war jedoch die zu schnelle Desaktivierung des Katalysators durch Belegung der Katalysatoroberfläche durch, in Parallelreaktionen entstehenden, Maillard-Produkte. Eine mögliche Lösung dieses Problems könnte durch Verwendung eines aktiveren und selektiveren Hydrierkatalysators erreicht werden. Auf Basis dieser Erkenntnisse wurde in einem systematischen Screening-Verfahren eine Reihe von Palladium-Festbettkatalysatoren hinsichtlich deren Performance bei dieser Reaktion untersucht. Bei den Reihenuntersuchungen zum schnellen Informationsgewinn kam ein Batch-Autoklav (1 l) zum Einsatz. Die Hauptkriterien des Screening-Verfahrens bei Pd-Systemen waren: Trägervariation (Aktivkohle, Al2O3, SiO2, TiO2, NbO2 und ZrO2), Variation der Präparationsmethode sowie Dotierung des Katalysators durch ein zweites Metall (Ag, Mg, In und Sn). Im allgemeinen zeigten die 1%-igen Pd/ZrO2 Festbettkatalysatoren hohe Aktivitäten und Langzeitstabilitäten, insbesondere die Schalenkatalysatoren waren bezüglich der aminierten Produkte selektiver gegenüber den Imprägnierkatalysatoren. Eine auf Basis von Gaschromatographie entwickelte Analysenmethode ermöglichte die Identifizierung zahlreicher Komponenten und vertiefte somit das Verständnis des komplexen Reaktionsnetzwerks. Mit Hilfe eines 8 l Autoklaven wurden im Rahmen dieser Arbeit die Hauptproduktisomere 1-N-n-Dodecylamino-1-desoxy-6-O-(α-D-Glucopyranosyl)-D-sorbit/ mannit sowie 2-N-n-Dodecylamino-2-desoxy-6-O-(α-D-Glucopyranosyl)-D-sorbit/ mannit für analytische und anwendungstechnische Untersuchungen in hoher Reinheit synthetisiert. Anhand dieser Ergebnisse wurde ein Verfahrenskonzept für eine technische Umsetzung ausgearbeitet.
5

Kawaguti, Haroldo Yukio. "Conversão enzimatica da sacarose em isomaltulose." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Orientador : Helia Harumi Sato
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-08T02:25:10Z (GMT). No. of bitstreams: 1 Kawaguti_HaroldoYukio_D.pdf: 24058276 bytes, checksum: a6cb1016d8d9d61e1418acf5a2867097 (MD5) Previous issue date: 2007
Resumo: A isomaltulose é um dissacarídeo redutor, isômero da sacarose, que possui um sabor adocicado suave e propriedades físicas e sensoriais muito similares, que tem sido considerado um substituto promissor da sacarose na indústria de alimentos, devido a algumas características como baixo potencial cariogênico e baixo índice glicêmico, promoção do crescimento de bifidobactérias benéficas da microbiota intestinal, e por apresentar maior estabilidade em relação à sacarose em alimentos e bebidas acidificados, além de poder ser convertido para isomalte, um açúcar álcool dietético e não cariogênico aplicado na indústria de alimentos e farmacêutica. Os objetivos deste trabalho foram otimizar um meio de cultivo, de menor custo, para a produção da enzima glicosiltransferase pela linhagem Erwinia sp. D12 e estudar a produção de isomaltulose a partir de sacarose utilizando-se células livres e células imobilizadas em alginato de cálcio. Na otimização do meio de cultivo, em frascos sob agitação, a máxima atividade obtida foi de 12,4 UA de glicosiltransferase/mL de meio de cultivo após 8 horas de fermentação a 30ºC, em meio composto de 150 g/L de melaço de cana-de-açúcar, 20 g/L de água de maceração de milho- Milhocina®, 15 g/L de extrato de levedura Prodex Lac SDÒ, e pH ajustado a 7,5. No estudo da produção de glicosiltransferase, em fermentador de 6,6 litros, utilizando-se o meio de cultivo otimizado foi obtida máxima atividade de 22,5 UA de glicosiltransferase/mL de meio de cultivo, após 8 horas de fermentação a 27oC. No estudo da produção de isomaltulose por células íntegras imobilizadas de Erwinia sp. D12 em alginato de cálcio foi verificado que o tratamento dos grânulos de células imobilizadas com 0,06% de glutaraldeído, promoveu uma maior taxa de conversão, sendo obtido cerca de 72,3% de isomaltulose, após 12 horas de incubação em frascos sob agitação a 30ºC. As células íntegras imobilizadas e tratadas com 0,06% de glutaraldeído, em colunas de leito empacotado, apresentaram maior estabilidade do que àquelas imobilizadas sem tratamento com o aditivo, e mantiveram a conversão de sacarose em isomaltulose entre 50-60% por 10 dias, a partir de solução de sacarose 35% e fluxo de 0,56 mL/min a 30ºC. Foram estudados diferentes tratamentos para a preparação de células íntegras, células lisadas e extrato enzimático bruto imobilizados em alginato de cálcio. Os métodos que mostraram melhores resultados, em processo em batelada, foi o extrato enzimático bruto imobilizado em alginato de cálcio (EEI), em que foram obtidas taxas de conversão entre 59,7% e 63,3%; e células lisadas por sonicação e imobilizadas (CSI), com taxas de conversão entre 47,6% e 62,3%. A coluna de leito empacotado contendo grânulos de células lisadas imobilizadas (CSI) apresentou maior estabilidade do que a coluna contendo os grânulos de extrato enzimático bruto imobilizado (EEI). A coluna de leito empacotado de CSI converteu 53-59% de sacarose em isomaltulose durante sete dias, posteriormente houve queda lenta e gradual da conversão não havendo mais transformação em isomaltulose após 21 dias. No estudo da produção de isomaltulose utilizando-se células livres de Erwinia sp. D12, em processo em batelada, foi verificado o efeito do pH, da temperatura, da concentração do substrato sacarose e da concentração de massa celular em frascos agitados a 150 rpm e 30ºC. A conversão de sacarose em isomaltulose foi favorecida utilizando-se temperaturas superiores a 30ºC, pH entre 6,0-6,5, massa celular entre 7,5- 12,5% e solução de sacarose de 20-35%, obtendo-se rendimentos de isomaltulose acima de 50%. No estudo da vida útil das células livres em escala de bancada, utilizando-se frascos Erlenmeyers sob agitação, foi verificado que os parâmetros de conversão fixados a: temperatura de 35ºC, pH 6,5, concentração de substrato sacarose 35% e concentração de massa celular 10% foram os mais favoráveis, promovendo um alto rendimento em isomaltulose entre 70-75%, por 16 bateladas. Os ensaios realizados em escala piloto demonstraram a viabilidade da conversão de sacarose em isomaltulose por células livres, em que foram obtidos cerca de 114 litros de xarope com alto teor de isomaltulose (63,40%). Os cristais de isomaltulose, após clarificação e purificação do xarope convertido, apresentaram pureza de 96,5%
Abstract: Isomaltulose is a reducing disaccharide and a structural isomer of sucrose. It has a mild sweet flavour and very similar physical and sensorial properties and has been considered as a promising substitute for sucrose in the food industry, due to some of its characteristics such as a low cariogenic potential and low glycemic index and the promotion of beneficial bifid bacteria in the intestinal microbial flora. It also shows greater stability than sucrose in acidified foods and drinks, and can be converted into isomalt, a dietetic sugar alcohol with no cariogenic potential for use in the food and pharmaceutical industries. The objectives of this research were the optimisation of a culture medium with reduced costs for the production of the enzyme glucosyltransferase by the strain Erwinia sp. D12, and the study of isomaltulose production from sucrose by free and immobilized cells. In the optimisation of the culture medium in shaken flasks, the highest glucosyltransferase activity achieved was 12.4 UA/mL of culture medium after 8 hours of fermentation at 30ºC, in a medium composed of 150 g/L of sugar cane molasses, 20 g/L of corn steep liquor- Milhocina® and 15 g/L of yeast extract Prodex Lac SD®, with the pH adjusted to 7.5. In the study for glucosyltransferase production in a 6.6-liter reactor using the optimised culture medium, the highest glucosyltransferase production achieved was 22.5 UA/mL of culture medium, after 8 hours of fermentation at 27ºC. In the study for isomaltulose production using Erwinia sp. D12 cells immobilized in calcium alginate, it was shown that the addition of 0.06% glutaraldehyde during the immobilization process, promoted a higher conversion rate, reaching about 72.3% isomaltulose after 12 hours of incubation at 30°C in shaken flasks. The immobilized whole cells treated with 0.06% glutaraldehyde, used in packed-bed reactors, presented greater stability than those immobilized without the addition of the additive, and maintained the conversion of sucrose into isomaltulose between 50-60% for 10 days, using a 35% sucrose solution with a flow rate of 0.56 mL/min at 30ºC. Different treatments were studied for the preparation of whole cells, lysed cells and a crude enzyme extract immobilized in calcium alginate. The methods that showed the best results in batch processes were the crude enzyme extract immobilized in calcium alginate (EEI), where conversion rates between 59.7% and 63.3% were achieved; and immobilized lysed cells (CSI), with conversion rates between 47.6% and 62.3%. The packed bed column containing granules of immobilized lysed cells (CSI) presented greater stability than that containing granules of immobilized crude enzymatic extract (EEI). The packed bed column with CSI converted 53-59% of sucrose into isomaltulose during seven days, and then showed a gradual decline in conversion, ceasing completely after 21 days. In the study of isomaltulose production using free Erwinia sp. D12 cells in a batch process, the effects of pH, temperature, sucrose substrate concentration and cell mass concentration were determined in shaken flasks at 150 rpm and 30ºC. The following conditions favoured the conversion of sucrose into isomaltulose: temperatures above 30ºC, pH between 6.0-6.5, cell mass between 7.5-12.5% and a sucrose concentration between 20-35%; when isomaltulose yields above 50% were obtained. The half-life of the free cells was studied on a bench scale in shaken Erlenmeyers flasks and it was shown that the following fixed conversion parameters were the most favourable: temperature of 35ºC, pH 6.5, 35% sucrose substrate concentration and 10% cell mass concentration; promoting high isomaltulose yields between 70-75%, for 16 batches. The pilot scale assays demonstrated the viability of the conversion of sucrose into isomaltulose by free cells, obtaining about 114 liters of high isomaltulose syrup (63.40%). The isomaltulose crystals, after clarification and purification of the converted syrup, showed a purity of 96.5%
Doutorado
Mestre em Ciência de Alimentos
6

Contesini, Fabiano Jares. "Caracterização e imobilização da glicosiltransferase de Erwinia sp. D12 que converte sacarose em isomaltulose." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Orientador: Helia Harumi Sato
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-12T20:00:55Z (GMT). No. of bitstreams: 1 Contesini_FabianoJares_M.pdf: 1094439 bytes, checksum: 9f9e34abfc4a94978b97e21b2b7168c1 (MD5) Previous issue date: 2009
Resumo: A isomaltulose é um dissacarídeo redutor, isômero da sacarose, com propriedades interessantes para a indústria de alimentos. Este açúcar apresenta propriedades similares às da sacarose, entretanto, apresenta baixo potencial cariogênico e baixo índice glicêmico. A isomaltulose é produzida industrialmente através da conversão enzimática da sacarose pela enzima glicosiltransferase produzida por certas linhagens de bactérias, como Protoaminobacter rubrum e Erwinia rhapontici. Este trabalho teve por objetivo purificar e caracterizar a glicosiltransferase produzida pela Erwinia sp. D12 e imobilizar a glicosiltransferase bruta em Celite e pectina de baixo teor de metoxilas (BTM). A glicosiltransferase foi purificada por cromatografia em coluna de troca catiônica SP-Sepharose Fast Flow, obtendo-se duas frações com atividade de glicosiltransferase. A enzima da fração n° 17 foi purificada cerca de 17,9 vezes, e a massa molecular foi estimada em 65 kDa, por SDS-PAGE. A glicosiltransferase bruta e as frações purificadas apresentaram atividade ótima em pH de 6,0 a 6,5 e em temperatura de 30 a 35°C e estabilidade na faixa de pH de 5,0 a 7,0 e em temperaturas inferiores a 30°C, sendo que as frações purificadas apresentaram menor estabilidade. As condições ótimas de imobilização da glicosiltransferase bruta em Celite foram pH 4,0 para adsorção da enzima no suporte, e quantidade de enzima de 1700 U. A glicosiltransferase bruta imobilizada em Celite, em processo de batelada e em coluna de leito empacotado, converteu cerca de 50% de sacarose em isomaltulose, porém a conversão diminuiu com o tempo. O tratamento da glicosiltransferase imobilizada em Celite com 0,1% de glutaraldeído não resultou em aumento da retenção e estabilidade da enzima. A glicosiltransferase imobilizada em gel de pectina BTM com adição de gordura manteve maior atividade de glicosiltransferase que as preparações de enzima imobilizada sem gordura e liofilizadas. Quando essa preparação foi aplicada em processo de batelada foi observada conversão inicial em torno de 30% com queda gradativa nas posteriores bateladas. Em colunas de leito empacotado foi observada conversão de sacarose em isomaltulose máxima de 10,5% em 2 horas, sendo que após 60 horas foi igual a 3%
Abstract: Isomaltulose is a reducing disaccharide and an isomer of sucrose. Because of its properties it is interesting for application in the food industry. This sugar shows similar properties to sucrose, but it has low cariogenic potential and low glycemic index. Industrially, isomaltulose is produced by conversion of sucrose using glucosyltransferase. This enzyme is produced by few bacterial strains such as Protoaminobacter rubrum and Erwinia rhapontici. The aims of this research were the purification and characterization of glucosyltransferase produced by Erwinia sp. D12 and the immobilization of the crude enzyme in Celite and low-metoxyl pectin. The glucosyltransferase was purified using cationic exchange column of SPSepharose Fast Flow and it was obtained two fractions with glucosyltransferase activity. The enzyme found in 17th fraction was purified 17.9-fold, and showed a molecular mass of 65 kDa, by SDS-PAGE. The crude glucosyltransferase and the purified fractions showed optimum activity in pH of 6.0 ¿ 6.5 and 30 ¿ 35°C and stability in pH 5.0 to 7.0 and under 30°C, and the purified preparation was less stable than the crude enzyme. The optimum condition of the immobilization of crude glucosyltransferase was using pH 4.0 for the adsorption of the enzyme into the support, and amount of enzyme of 1700 U. The glucosyltransferase immobilized on Celite was applied to the conversion of sucrose into isomaltulose in a batch system and packed-bed reactor. A conversion rate of 50% was observed, but this decreased over a period of hours. The treatment of the immobilized glucosyltransferase on Celite, with 0.1% glutharaldehyde did not increase the stability of the enzyme. The immobilization of crude glucosyltransferase in lowmetoxyl pectin with a fat addition, presented a higher activity when compared to microcapsules without fat or freeze dried. When this preparation was applied to the conversion of sucrose into isomaltulose, in a batch system, it was observed an initial conversion rate of 30%. However this value decreased in further batches. In the packed-bed reactors, the highest conversion value of sucrose to isomaltulose was 10.5% in 2 hours, but after 60 hours the conversion was 3%
Mestrado
Bioquimica de Alimentos
Mestre em Engenharia de Alimentos
7

Carvalho, Priscila Hoffmann 1983. "Conversão de sacarose em isomaltulose e trealulose utilizando-se células de Serratia plymuthica ATCC 15928 livres e imobilizadas em diferentes matrizes com adição de transglutaminase." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Orientador: Hélia Harumi Sato
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-23T16:00:04Z (GMT). No. of bitstreams: 1 Carvalho_PriscilaHoffmann_D.pdf: 4102242 bytes, checksum: 1496382da70a395d87d5c8536317d42d (MD5) Previous issue date: 2013
Resumo: A isomaltulose e a trealulose são dissacarídeos isômeros estruturais, que podem ser obtidos a partir da sacarose utilizando-se glicosiltransferase bacteriana. Esses dissacarídeos são considerados açúcares alternativos de grande potencial para uso nas indústrias de alimentos e farmacêutica porque são hidrolisados e absorvidos mais lentamente e apresentam baixo potencial cariogênico comparado com a sacarose. Foi estudada a imobilização de células de Serratia plymuthica ATCC 15928, produtora de glicosiltransferase por gelificação iônica em gel alginato contendo transglutaminase (TG) e também a utilização de células livres para a conversão de sacarose em isomaltulose e trealulose. Utilizando-se células livres de Serratia plymuthica ATCC 15928 foi obtido 70% de conversão em isomaltulose e 8% de trealulose a 25°C por 10 bateladas de 15 minutos, a partir de solução de sacarose 30%. Entre as cinco amostras de alginato de sódio testadas, para a imobilização das células de S. plymuthica ATCC 15928 com e sem adição de TG, foram obtidos melhores resultados (médio de três bateladas) de conversão de sacarose (37,4% de isomaltulose) utilizando o alginato de sódio B, de alta viscosidade (14.000cP Sigma ¿ A 7128) em presença de TG. Nas condições estudadas (1,7% de alginato de sódio, 30% de massa celular úmida, solução de cloreto de sódio 0,2Mol/L, 2% de TG e 35% de sacarose) também houve maior facilidade de formação de grânulos uniformes. A presença de TG como agente de reticulação na matriz de imobilização melhorou a estabilidade de conversão por três bateladas onde observou-se resultado médio 27% maior com relação a matriz com o mesmo tipo de alginato (B) em ausência de TG. A composição da matriz de imobilização com adição de TG foi otimizada por metodologia de planejamento experimental, assim como a adição de gelatina como fonte de proteína adicional para promoção de ligações cruzadas catalisadas pela TG. Os melhores resultados de conversão de sacarose (solução 35%) em isomaltulose (72,66% de isomaltulose e 8% de trealulose em 4 bateladas de 24horas) foram obtidos utilizando-se matriz de polissacarídeo-proteína composto de 1,7% de alginato de sódio 14.000cP (Sigma®-A7128), 0,25mol/L de CaCl2, 0,5% de gelatina, 3,5% de TG e concentração de massa celular úmida superior a 35% (m:v). Verificou-se que a adição de ALMP na matriz de alginato de cálcio-gelatina-TG para imobilização de S. plymuthica, testada por planejamentos experimentais seqüenciais, não aumentou a estabilidade da taxa de conversão de sacarose em isomaltulose quando comparada com as células imobilizadas em matriz de alginato de cálcio-gelatina-TG. Em processo contínuo utilizando-se coluna empacotada com células de S. plymuthica imobilizadas em matriz otimizada e descrita acima, foi obtida taxa de conversão média de 64% de sacarose em isomaltulose durante 200 horas de processo, equivalente a 0,27g de isomaltulose/g de células imobilizadas/hora em coluna a 25°C e fluxo de substrato (35% de sacarose) 0,2mL/min
Abstract: The isomaltulose and trehalulose are disaccharides and structural isomers, which can be obtained from sucrose using bacterial glycosyltransferase. These disaccharide are considered alternative sugars with great potential for use in the food and pharmaceutical industries because they are hydrolyzed and absorbed more slowly and have a low cariogenic potential compared with sucrose. The conversion of sucrose to isomaltulose and trehalulose was estudied using immobilized and free cells of Serratia plymuthica ATCC 15928. The cells were immobilized by ionic gelation in alginate gel containing transglutaminase. Using free cells of Serratia plymuthica ATCC 15928 was obtained 70% isomaltulose conversion and 8% trehalulose conversion at 25° C in 10 batches of 15 minutes from a 30% sucrose solution. Among the five samples of sodium alginate tested for S. plymuthica ATCC 15928 cells immobilization, with or without the addition of TG, the best results (average of three batches) were obtained using sodium alginate B, high viscosity (14.000cP Sigma - A 7128) in the presence of TG, leading to 37.4% isomaltulose conversion from sucrose. In the studied conditions (1.7% sodium alginate, 30% wet cell mass solution of sodium chloride 0.2 Mol/L, 2% TG, 35% sucrose) was also easier to form uniform granules. The presence of TG as a crosslinking agent in the immobilization matrix improved the stability during three batches, resulting in an 27% higher average conversion with respect to a same type of alginate (B) matrix in absence of TG. Immobilization matrix compositions with addition of TG was optimized by experimental design methodology, as well as the addition of gelatin as a protein source for promoting additional crosslinking catalyzed by TG. The best results conversion of sucrose (35% solution) into isomaltulose (72.66% of isomaltulose and 8% of trehalulose in 4 batches of 24 hours) were obtained using proteinpolysaccharide matrix composed of 1.7% alginate 14.000cP sodium (Sigma® A7128), 0.25 Mol/L CaCl2, 0.5% gelatin, 3.5% TG, and wet cell mass concentration of 35% (w:v). It has been found that the addition of ALMP (amidated low methoxyl pectin) into the calcium alginate-gelatin-TG matrix for immobilization of S. plymuthica, tested by sequential experimental design, do not increase the stability of sucrose to isomaltulose conversions rate when compared with cells immobilized in calcium alginate -gelatin-TG matrix. In continuous process using a packed column with S. plymuthica cell's immobilized in the optimized matrix described above, it was obtained an average conversion rate of 64% sucrose to isomaltulose during a 200 hours process, equivalent to 0.27g isomaltulose per gram of immobilized cell per hour, in a column at 25° C and using flow substrate (35% sucrose) of 0.2 mL / min
Doutorado
Ciência de Alimentos
Doutora em Ciência de Alimentos
8

Gericke, Birthe [Verfasser]. "Molecular basis of the heterogeneity in congenital sucrase-isomaltase deficiency / Birthe Gericke." Hannover : Bibliothek der Tierärztlichen Hochschule Hannover, 2016. http://d-nb.info/1124853715/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keller, Patrick. "Developmental regulation and post-translational modification of lactase-phlorizin hydrolase and sucrase-isomaltase /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Orsi, Daniela Castilho. "Produção de isomaltulose a partir de sacarose utilizando a bacteria Serratia plymuthica." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/254328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Orientador: Helia Harumi Sato
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-12T13:27:08Z (GMT). No. of bitstreams: 1 Orsi_DanielaCastilho_D.pdf: 2624783 bytes, checksum: add51ff0035724efe97b8947a93c9d67 (MD5) Previous issue date: 2008
Resumo: A sacarose é o principal açúcar utilizado no processamento de alimentos, contudo, o consumo excessivo e não balanceado de alimentos com alto teor de sacarose contribui para a prevalência de doenças como obesidade e cáries dentárias. Nas últimas décadas, tem ocorrido um aumento do interesse pela produção de novos açúcares como alternativa para substituir a sacarose. A isomaltulose (O-a-D-glicopiranosil-1,6-frutofuranosídeo) é um açúcar pouco cariogênico e isômero estrutural da sacarose, encontrada naturalmente no mel em pequenas quantidades. A bactéria Serratia plymuthica ATCC 15928 produz a enzima glicosiltransferase e catalisa a conversão da sacarose em isomaltulose. Neste trabalho, utilizou-se a metodologia de superfície de resposta para estudar o efeito dos componentes do meio de cultivo na produção de glicosiltransferase pela bactéria Serratia plymuthica em frascos sob agitação a 200 rpm e 30ºC. Foi obtida alta produção de glicosiltransferase (14,26 UA/mL, média dos pontos centrais) utilizando-se o meio de cultivo 1, composto de 40 g/L de melaço de cana de açúcar, 15 g/L de peptona bacteriológica da BiobrásÒ e 20 g/L de extrato de levedura Prodex Lac SDÒ. O meio de cultivo 2 (40 g/L de melaço de cana de açúcar e 20 g/L de extrato de levedura Prodex Lac SDÒ), além de render ótima produção de glicosiltransferase (13,54 UA/mL, média dos pontos centrais), teve seu custo reduzido por ser formulado sem a adição do componente peptona bacteriológica da BiobrásÒ. Foi estudado o efeito da temperatura (26ºC, 28ºC e 30ºC) na fermentação da bactéria Serratia plymuthica para produção de massa celular e de glicosiltransferase em fermentador de 6,6 L. A maior produção de glicosiltransferase ocorreu após 6 horas de fermentação na temperatura de 26ºC, sendo obtida atividade enzimática de 25,97 UA/mL. As células livres da bactéria Serratia plymuthica foram utilizadas para a conversão de sacarose em isomaltulose. Utilizando-se concentração de massa celular úmida de 20% (p/v) e concentração de solução de sacarose de 25% (p/v) obteve-se alta porcentagem de isomaltulose (84,33%, valor médio dos meios de cultivo 1 e 2) após 2 horas de reação a 27ºC, em frascos sob agitação a 180 rpm. As células livres cultivadas em meio de cultivo 2 (sem adição de peptona bacteriológica da BiobrásÒ) foram reutilizadas por nove bateladas sucessivas e obteve-se eficiente conversão de sacarose em isomaltulose (75,20%, média das bateladas). Foi estudada a produção de isomaltulose a partir de sacarose por células da bactéria Serratia plymuthica imobilizadas em alginato de cálcio. A conversão de sacarose em isomaltulose pelas células imobilizadas foi feita em bioreatores de leito empacotado mantidos a temperatura de 25°C. O tratamento das células imobilizadas em alginatoSynthÒ 2% com glutaraldeído aumentou a atividade enzimática, sendo obtida conversão de sacarose em isomaltulose acima de 64% por 15 dias. A goma gelana KELCOGELÒ F foi utilizada como suporte para imobilização das células de Serratia plymuthica. As células imobilizadas em goma gelana tratadas com glutaraldeído foram secas por 36 horas, sob refrigeração a 10°C. As células imobilizadas foram transferidas para bioreatores mantidos a 25ºC e usadas na conversão contínua de sacarose em isomaltulose. Quando as células imobilizadas secas foram utilizadas no processo contínuo, a conversão de sacarose em isomaltulose manteve-se acima de 69% por 15 dias. Esse estudo demonstrou a possibilidade do uso da goma gelana KELCOGELÒ F como suporte para imobilização das células de Serratia plymuthica. O suporte utilizado combina a simplicidade na técnica de imobilização celular, boa estabilidade operacional e altas taxas de bioconversão
Abstract: Sucrose is the main sweetener used in food processing, but, the excessive and imbalanced consumption of high-sucrose foods is a contributory factor in obesity and dental caries. In the last few decades, the production of new sweeteners as alternatives to sucrose has aroused great interest. Isomaltulose (O-a-D-glucopyranosyl-1,6- fructofuranose) is a low cariogenic sweetener and a structural isomer of sucrose, naturally present in honey in small quantities. The bacteria Serratia plymuthica ATCC 15928 produces the enzyme glucosyltransferase and catalyses the conversion of sucrose into isomaltulose. In this work, response surface methodology was applied to study the effect of culture medium components in the production of glucosyltransferase by Serratia plymuthica in shaken flasks at 200 rpm and 30ºC. Higher glucosyltransferase production (14.26 UA/mL, average of the central points) was obtained in culture medium 1, composed of 40 g/L of sugar cane molasses, 15 g/L of BiobrásÒ bacteriological peptone and 20 g/L of Prodex Lac SDÒ yeast extract. Culture medium 2 (40 g/L of sugar cane molasses and 20 g/L of Prodex Lac SDÒ yeast extract, formulated without the component BiobrásÒ bacteriological peptone, resulted in a low cost medium and optimized glucosyltransferase production (13.54 UA/mL, average of the central points). The influence of temperature (26ºC, 28ºC and 30ºC) on the growth of the bacterium Serratia plymuthica for cell mass and glucosyltransferase production in a 6.6 L bioreactor, was also studied. The highest production of glucosyltransferase (25.97 UA/mL) was obtained in culture medium 1 after 6 hours at 26ºC. Free Serratia plymuthica cells were used for the conversion of sucrose into isomaltulose. A higher isomaltulose production (84.33%, mean value for culture media 1 and 2) was obtained at a temperature of 27ºC, 20% (w/v) wet cell mass and 25% (w/v) sucrose solution after 2 hours of reaction in shaken flasks at 180 rpm. The free cells cultivated in the culture medium 2 (without BiobrásÒ bacteriological peptone) were reused for nine successive batches, with efficient conversion of sucrose into isomaltulose (75.20%, average of the batches). Furthermore, the conversion of sucrose into isomaltulose using Serratia plymuthica cells immobilized in calcium alginate was also studied. The continuous production of isomaltulose by immobilized cells was accomplished in packed bed bioreactors maintained at 25°C. The treatment of cells immobilized in 2% SynthÒ alginate with glutaraldeyde increased enzyme activity obtaining an isomaltulose production of over 64% for 15 days. The gellan gum KELCOGELÒ F was also used as a support in the immobilization of Serratia plymuthica cells. The cells immobilized in gellan gum and treated with glutaraldeyde, were dried for approximately 36 hours at 10°C and used for the continuous production of isomaltulose. The immobilized cells were packed into bioreactors maintained at 25°C. When dry immobilized cells were used in the continuous process, the conversion of sucrose into isomaltulose was over 69% for about 15 days. This study demonstrated the feasibility of using KELCOGELÒ F gellan gum as a support in the immobilization of Serratia plymuthica cells. This support used combines the simplicity of the immobilization technique with good operational stability and high levels of bioconversion
Doutorado
Doutor em Ciência de Alimentos

Books on the topic "Isomaltose":

1

Recker, Carla. Kontinuierliche katalytische Oxidation von Isomaltulose und verwandten Verbindungen: Verfahrensentwicklung und Synthese polymerer Folgeprodukte mit Komplexierungsvermögen. [S.l: s.n.], 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beattie, R. Mark, Anil Dhawan, and John W.L. Puntis. Carbohydrate intolerance. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569862.003.0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Carbohydrates in the diet 128Carbohydrate digestion 129Hypolactasia/lactose intolerance 130Congenital sucrase–isomaltase deficiency 130Glucose–galactose malabsorption 131Confirmation of diagnosis of carbohydrate malabsorption 131Carbohydrates make up at least half the energy intake in the diet. The principal carbohydrates are the storage polysaccharides (starch, glycogen and cellulose), the disaccharides lactose and sucrose, and the monosaccharides glucose and fructose....
3

Puntis, John. Carbohydrate intolerance. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198759928.003.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Symptoms such as watery diarrhoea, wind, and abdominal cramps should raise the possibility of carbohydrate intolerance. Lactose maldigestion is the most common cause and can be transient, after gastroenteritis, or in some populations is genetically determined with increasing age. Congenital sucrase–isomaltase deficiency (CSID) is underdiagnosed but amenable to treatment with dietary modification and oral enzyme replacement. Glucose–galactose malabsorption presents with watery diarrhoea from the time of first feeds. Investigations include sugar chromatography (when available), breath hydrogen testing, mucosal enzyme assay, and gene testing for CSID.
4

Lai, Eric Hon Cheong. Immunochemical and genetic studies of synthetic glycolipids in mice: I. Genetic and non-genetic control of the immune response of mice to a synthetic glycolipid, stearylisomaltotetraose ; II. Immunochemical studies of conjugates of isomaltosyl oligosaccharides to lipid : production and characterization of mouse hydridoma antibodies specific for stearyl-isomaltosyl oligosaccharides. 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Isomaltose":

1

Gartler, Stanley M., R. Scott Hansen, Vinzenz Oji, Heiko Traupe, Julia Horn, Bodo Grimbacher, Srijita Sen-Chowdhry, et al. "Isomaltose Intolerance." In Encyclopedia of Molecular Mechanisms of Disease, 1089–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann, et al. "Congenital Sucrose-Isomaltose Malabsorption." In Encyclopedia of Molecular Mechanisms of Disease, 404. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tauber, R., and F. H. Perschel. "Saccharase-Isomaltase." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_2728-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tauber, R., and F. H. Perschel. "Saccharase-Isomaltase." In Springer Reference Medizin, 2089. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sentko, Anke, and Ingrid Willibald-Ettle. "Isomaltulose." In Sweeteners and Sugar Alternatives in Food Technology, 397–415. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118373941.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leung, Alexander K. C., Cham Pion Kao, Andrew L. Wong, Alexander K. C. Leung, Thomas Kolter, Ute Schepers, Konrad Sandhoff, et al. "Sucrase-Isomaltase Deficiency." In Encyclopedia of Molecular Mechanisms of Disease, 2002. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schomburg, Dietmar, and Dörte Stephan. "Isomaltulose synthase." In Enzyme Handbook 17, 269–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peters, Nils, Martin Dichgans, Sankar Surendran, Josep M. Argilés, Francisco J. López-Soriano, Sílvia Busquets, Klaus Dittmann, et al. "Congenital Sucrase-Isomaltase Deficiency." In Encyclopedia of Molecular Mechanisms of Disease, 404. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_8998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheetham, Peter S. J., and Christopher Bucke. "Production of Isomaltulose Using Immobilized Bacterial Cells." In Carbohydrate Biotechnology Protocols, 255–60. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-59259-261-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bracho-Oliveros, Juan Pablo, Andrea Carolina Ramirez-Gutierrez, Gaston Ezequiel-Ortiz, Juan Carlos Contreras-Esquivel, and Sebastian Fernando Cavalitto. "Isomaltulose: The Next Sweetener, A Quick Review." In Food Product Optimization for Quality and Safety Control, 277–91. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003003144-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Isomaltose":

1

Lea, Michael A., and Charles desBordes. "Abstract 227: Maltose enhanced the growth of bladder and colon cancer cells unlike some other disaccharides: Cellobiose, isomaltose, lactose, and sucrose." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kasai, Karina, and Maria Macedo. "Deficiência Congênita da Sacarase-Isomaltase." In XXI I Congresso Brasileiro de Nutrologia. Thieme Revinter Publicações Ltda, 2018. http://dx.doi.org/10.1055/s-0038-1674577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gómez, P. Nieto, R. Alvarez Sanchez, P. Moreno Raya, and A. Rodriguez Delgado. "4CPS-020 Use and effectiveness of carboxymaltose iron and isomaltoside iron." In Abstract Book, 23rd EAHP Congress, 21st–23rd March 2018, Gothenburg, Sweden. British Medical Journal Publishing Group, 2018. http://dx.doi.org/10.1136/ejhpharm-2018-eahpconf.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RABELO, M. C., A. R. A. SILVA, S. O. SANCHO, S. RODRIGUES, and D. C. S. AZEVEDO. "AVALIAÇÃO DE DIFERENTES ESTRATÉGIAS DE SÍNTESE ENZIMÁTICA DE ISOMALTO-OLIGOSSACARÍDEOS PREBIÓTICOS." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-0307-26084-143699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reinisch, Walter, Jens Frederik Dahlerup, and Richard Derman. "PWE-049 Assessment of symptomatic hypophosphatemia with iron isomaltoside in inflammatory bowel disease patients." In British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BIANCHETTI, LAÍS GAVA, JEFFERSON LUIZ GOMES CORRÊA, JULIANA RODRIGUES DO CARMO, PAULA GIAROLLA SILVEIRA, and GUILHERME MATHIAS LOPES. "CINÉTICA DE SECAGEM DE FATIAS DE BATATA YACON PRÉ-TRATADAS COM SOLUÇÃO OSMÓTICA DE ISOMALTULOSE." In ANAIS DO XL CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS. Uberlândia - MG, BR: Galoa, 2022. http://dx.doi.org/10.17648/enemp-2022-159219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ng, Oliver, Barrie Keeler, John Alastair Simpson, Srinivasan Madhusudan, Matthew J. Brookes, and Austin G. Acheson. "PWE-119 Iron isomaltoside to improve oesophagogastric adenocarcinoma related anaemia and quality of life during chemotherapy." In British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Amanda, Vida Cairnes, Sean Mole, Claire Elworthy, Juan Saucedo Figueredo, James R. Goodhand, Tariq Ahmad, and Nicholas A. Kennedy. "PWE-008 Dosing, durability of haemoglobin response and safety of iron isomaltoside in patients with gastrointestinal diseases." In British Society of Gastroenterology Annual Meeting, 17–20 June 2019, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2019. http://dx.doi.org/10.1136/gutjnl-2019-bsgabstracts.339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Azevedo de Lucena, Fernando, Weysser Felipe Cândido de Souza, Isabela Pereira, Laésio Martins, Ruann Janser Soares de Castro, and Hélia Harumi Sato. "PRODUÇÃO DE ISOMALTULOSE A PARTIR DE SACAROSE UTILIZANDO MICRO-ORGANISMOS PRODUTORES DE GLICOSILTRANSFERASES, EM PROCESSO DE BATELADA." In V ENCONTRO NACIONAL DA AGROINDúSTRIA. Galoa, 2019. http://dx.doi.org/10.17648/enag-2019-115095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Hsiao-Ling. "Supplementation of Isomalto-oligosaccharide Reduced Colon Cancer-related Bacteria Enzymes and Fecal Toxicity in Nursing-home Residents." In 2017 2nd International Conference on Biological Sciences and Technology (BST 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/bst-17.2018.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Isomaltose":

1

Farazi, Mena, Michael Houghton, Margaret Murray, and Gary Williamson. Systematic review of the inhibitory effect of extracts from edible parts of nuts on α-glucosidase activity. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Review question / Objective: The aim of this review is to examine inhibitory effect of functional components in extracts from edible nuts on α-glucosidase activity. At the end of this review the following questions will be addressed by summarizing data of in-vitro studies: which nut extract has the strongest inhibitory effect? Which functional component (e.g. polyphenols) has the strongest inhibitory effect against α-glucosidase? Are there any differences between inhibition of α-glucosidase from different sources (e.g. yeast and mammalian)? Condition being studied: Any papers looking at inhibition of α-glucosidase activity (a carbohydrate digestive enzyme; includes sucrase, maltase and isomaltase activities) by extracts of edible parts of nut will be included in this review. Papers looking at other parts of nut plants and other enzymes will be excluded.

To the bibliography