Academic literature on the topic 'Isophorone diisocyanate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Isophorone diisocyanate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Isophorone diisocyanate"
Karpov, Sergei V., Aygul S. Dzhalmukhanova, Dmitry A. Chernyayev, Vera P. Lodygina, Victoria V. Komratova, and Elmira R. Badamshina. "Kinetic Features of Isophorone Diisocyanate and Oligoesterdiols Reaction under Waterborne Polyurethane Synthesis Conditions and the Preparation of the Polymer Dispersions." Key Engineering Materials 869 (October 2020): 508–15. http://dx.doi.org/10.4028/www.scientific.net/kem.869.508.
Full textIvanova, K. Yu, M. V. Kuzmin, L. G. Rogozhina, A. O. Patianova, V. L. Semenov, and R. I. Alexandrov. "Synthesis and research of polyfunctional silylureas used in electric deposition of tin-indium alloy." Chimica Techno Acta 8, no. 3 (September 13, 2021): 20210305. http://dx.doi.org/10.15826/chimtech.2021.8.3.05.
Full textGebauer, Tim, Axel T. Neffe, and Andreas Lendlein. "Influence of diisocyanate reactivity and water solubility on the formation and the mechanical properties of gelatin-based networks in water." MRS Proceedings 1569 (2013): 15–20. http://dx.doi.org/10.1557/opl.2013.839.
Full textLim, Ye-Ji, Young-Kyu Song, Dong-Min Kim, and Chan-Moon Chung. "Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating." Polymer Korea 39, no. 1 (January 25, 2015): 56–63. http://dx.doi.org/10.7317/pk.2015.39.1.56.
Full textMohammed, Issam A., and Govindarajan Sankar. "Synthesis, deblocking and cure reaction studies of secondary alcohol-blocked isocyanates." High Performance Polymers 23, no. 7 (November 2011): 535–41. http://dx.doi.org/10.1177/0954008311421833.
Full textNeffe, Axel T., Tim Gebauer, and Andreas Lendlein. "Tailoring of Mechanical Properties of Diisocyanate Crosslinked Gelatin-Based Hydrogels." MRS Proceedings 1569 (2013): 3–8. http://dx.doi.org/10.1557/opl.2013.837.
Full textWang, Jie, Fengxian Qiu, Haiyan Wu, Xin Li, Tao Zhang, Xiangheng Niu, Dongya Yang, Jiangming Pan, and Jicheng Xu. "A novel water-soluble chitosan linked fluorescent carbon dots and isophorone diisocyanate fluorescent material toward detection of chromium(vi)." Analytical Methods 8, no. 48 (2016): 8554–65. http://dx.doi.org/10.1039/c6ay02822e.
Full textGötz, Hans, Uwe Beginn, Camiel F. Bartelink, Henri J. M. Grünbauer, and Martin Möller. "Preparation of Isophorone Diisocyanate Terminated Star Polyethers." Macromolecular Materials and Engineering 287, no. 4 (April 1, 2002): 223. http://dx.doi.org/10.1002/1439-2054(20020401)287:4<223::aid-mame223>3.0.co;2-z.
Full textLi, Ting, Tianze Zheng, Jiarui Han, Zhanli Liu, Zhao-Xia Guo, Zhuo Zhuang, Jun Xu, and Bao-Hua Guo. "Effects of Diisocyanate Structure and Disulfide Chain Extender on Hard Segmental Packing and Self-Healing Property of Polyurea Elastomers." Polymers 11, no. 5 (May 8, 2019): 838. http://dx.doi.org/10.3390/polym11050838.
Full textGurunathan, T., Smita Mohanty, and Sanjay K. Nayak. "Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites." RSC Advances 5, no. 15 (2015): 11524–33. http://dx.doi.org/10.1039/c4ra14601h.
Full textDissertations / Theses on the topic "Isophorone diisocyanate"
Cardoso, Oldemar Ribeiro. "Prepara??o de resinas de poliuretana ? base de ?leo de mamona e dietanolamina." Universidade Federal do Rio Grande do Norte, 2007. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17592.
Full textConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60?C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25?C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents
O presente trabalho teve como objetivo a obten??o de poli?is a partir das rea??es do ?leo de mamona (OM) com dietanolamina (DEA), visando elevar o ?ndice de hidroxila e consequentemente o grau de reticula??o dos produtos finais, cuja aplica??o se destinou ao encapsulamento de circuitos eletroeletr?nicos. A caracteriza??o desses poli?is e respectivas misturas foram feitas utilizando-se a t?cnica da resson?ncia magn?tica nuclear (NMR). O OM (triglicer?deo do ?cido ricinoleico) ? um poliol vegetal natural por apresentar grupo funcional hidroxila que permite v?rias rea??es e produ??o de diferentes produtos. Entre eles est?o as poliuretanas (PU) que t?m sido consideradas como produtos ideais para encapsulamento de componentes de circuitos eletro-eletr?nicos, devido as suas excelentes propriedades com rela??o ? resist?ncia mec?nica e qu?mica. As poliuretanas derivadas do ?leo de mamona podem ser consideradas materiais alternativos de fonte renov?vel e, para as produzidas neste trabalho, n?o foram empregados nenhum tipo de solvente. Cerca de 90% dos ?cidos graxos que comp?em o ?leo de mamona s?o ?cido ricinoleico (?cido 12-hidroxioleico), enquanto os outros 10% s?o ?cidos graxos n?o hidroxilados (?cidos linoleico e oleico). As an?lises qu?micas do ?leo de mamona indicam uma funcionalidade m?dia de 2,7, em rela??o aos grupos hidroxila. A poliadi??o entre o poliol resultante e o isocianato de isoforona (IPDI) teve sua cin?tica aco mpanhada com o aux?lio do re?metro Haake RS 150 ? temperatura de 60 ?C. As propriedades el?tricas foram determinadas em uma ponte HP LCR Meter 4262 A a 1,0 Hz e 10,0 KHz. As an?lises qu?micas mostraram que os poli?is obtidos apresentaram ?ndice de hidroxila entre 230 e 280 mgKOH/g. A rea??o de poliadi??o com IPDI produziu resinas de poliuretana com as seguintes propriedades: dureza entre 45 e 65 shore D (ASTM D2240); constante diel?trica de 3,0 a 25 ?C (ASTM D150). Os resultados, de um modo geral, indicaram que as resinas, cujo extensor de cadeia foi a DEA, apresentaram propriedades compat?veis e em muitos casos superiores, quando comparadas ?s dos produtos atualmente dispon?veis no mercado, sintetizados ? base de trietanolamina (TEA)
Sousa, Kenia Garrido Marques de. "Estudo Viscosimétrico de Soluções de Pré-Polímeros Uretânicos à Base de Poli(Glicol Propilênico) e Diisocianato de Isoforona." Universidade do Estado do Rio de Janeiro, 2006. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=104.
Full textNeste estudo, o comportamento em solução diluída de pré-polímeros uretânicos à base de poli(glicol propilênico) (PPG) e diisocianato de isoforona (IPDI) foi avaliado por medidas viscosimétricas a 30 C em dois tipos de solventes, com diferentes polaridades: isopropanol e tolueno. Os pré-polímeros foram sintetizados em massa, ou seja, na ausência de qualquer solvente, e nas formulações foram variadas as razões entre o número de equivalentes-grama de grupamentos isocianato e hidroxila [NCO/OH] e a massa molar do PPG. Os pré-polímeros foram caracterizados por espectrometria na região do infravermelho. No tratamento matemático dos dados viscosimétricos, foram empregadas cinco diferentes equações para determinar os valores de viscosidade intrínseca: Huggins; Kraemer e Schulz-Blaschke, por extrapolação gráfica; e Solomon-Ciuta; Deb-Chanterjee e; novamente, Schulz-Blaschke, para determinações por um único ponto. Os valores de viscosidade intrínseca obtidos pelos dois métodos (extrapolação gráfica e por um único ponto) foram comparados a fim de se verificar a validade da determinação por um único ponto para os sistemas analisados, bem como determinar qual equação seria a mais adequada para esse tipo de cálculo. Foram calculadas as constantes viscosimétricas de Huggins, Kraemer e Schulz-Blaschke, e foi feita uma análise da qualidade do solvente.
In this study the behavior of urethanes prepolymers based on poly(propylene glycol) (PPG) and isophorone diisocyanate (IPDI), in diluted solutions, were studied by viscosimetric measurements, at 30 C, in two types of solvents with different polarities: isopropyl alcohol and toluene. The prepolymers were synthesized in bulk, i.e, in the absence of solvent. In the formulations were varied the ratio between the equivalent-grams number of isocyanate functional groups and hydroxyl group [NCO/OH] and PPG molecular mass. The prepolymers were characterized by infrared spectrometry (FTIR). Five different equations were used to determine intrinsic viscosities values: Huggins; Kraemer and Schulz-Blaschke, by graphic extrapolation; and Solomon-Ciuta; Deb-Chanterjee and; again, Schulz-Blaschke, by a single point determination. The intrinsic viscosities values obtained by two methods (graphic extrapolations and through a single point determination) were compared in order to verify the validity of the single point determination for the systems studied, as well as the more accurate equation for this type of calculation. Viscometric constants from Huggins; Kraemer and Schulz-Blaschke equations were also determined to verify solvent quality.
Book chapters on the topic "Isophorone diisocyanate"
Gooch, Jan W. "Isophorone Diisocyanate." In Encyclopedic Dictionary of Polymers, 402. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6526.
Full textBeglarigale, Ahsanollah, Doğa Eyice, Yoldaş Seki, and Halit Yazıcı. "Microencapsulation of Isophorone Diisocyanate with Silica Shell." In RILEM Bookseries, 105–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76551-4_10.
Full text"Isophorone diisocyanate (IPDI)." In Encyclopedic Dictionary of Polymers, 542. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_6420.
Full textReports on the topic "Isophorone diisocyanate"
NIOSH skin notation (SK) profiles: isophorone diisocyanate [CAS No. 4098-71-9]. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, August 2014. http://dx.doi.org/10.26616/nioshpub2014148.
Full text