Journal articles on the topic 'Isosceles orthogonality'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 journal articles for your research on the topic 'Isosceles orthogonality.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
He, Chan, and Dan Wang. "A Remark on the Homogeneity of Isosceles Orthogonality." Journal of Function Spaces 2014 (2014): 1–3. http://dx.doi.org/10.1155/2014/876015.
Full textMizuguchi, Hiroyasu. "The constants to measure the differences between Birkhoff and isosceles orthogonalities." Filomat 30, no. 10 (2016): 2761–70. http://dx.doi.org/10.2298/fil1610761m.
Full textFreese, Raymond, and Edward Andalafte. "Strong additivity of metric isosceles orthogonality." Journal of Geometry 62, no. 1-2 (July 1998): 121–28. http://dx.doi.org/10.1007/bf01237604.
Full textAlonso, Javier, Horst Martini, and Senlin Wu. "On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces." Aequationes mathematicae 83, no. 1-2 (September 18, 2011): 153–89. http://dx.doi.org/10.1007/s00010-011-0092-z.
Full textJi, Donghai, and Senlin Wu. "Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality." Journal of Mathematical Analysis and Applications 323, no. 1 (November 2006): 1–7. http://dx.doi.org/10.1016/j.jmaa.2005.10.004.
Full textChmieliński, Jacek, and Paweł Wójcik. "Isosceles-orthogonality preserving property and its stability." Nonlinear Analysis: Theory, Methods & Applications 72, no. 3-4 (February 2010): 1445–53. http://dx.doi.org/10.1016/j.na.2009.08.028.
Full textOjha, Bhuwan Prasad, and Prakash Muni Bajrayacharya. "Relation of Pythagorean and Isosceles Orthogonality with Best approximations in Normed Linear Space." Mathematics Education Forum Chitwan 4, no. 4 (November 15, 2019): 72–78. http://dx.doi.org/10.3126/mefc.v4i4.26360.
Full textOjha, Bhuwan Prasad, Prakash Muni Bajracharya, and Vishnu Narayan Mishra. "On Uniqueness of New Orthogonality via 2-HH Norm in Normed Linear Space." Journal of Function Spaces 2020 (November 20, 2020): 1–6. http://dx.doi.org/10.1155/2020/8835492.
Full textKikianty, Eder, and Sever Dragomir. "On Carlsson type orthogonality and characterization of inner product spaces." Filomat 26, no. 4 (2012): 859–70. http://dx.doi.org/10.2298/fil1204859k.
Full textZamani, Ali, and Mohammad Sal Moslehian. "Approximate Roberts orthogonality sets and $${(\delta, \varepsilon)}$$ ( δ , ε ) -(a, b)-isosceles-orthogonality preserving mappings." Aequationes mathematicae 90, no. 3 (November 6, 2015): 647–59. http://dx.doi.org/10.1007/s00010-015-0383-x.
Full textDadipour, F., F. Sadeghi, and A. Salemi. "Characterizations of inner product spaces involving homogeneity of isosceles orthogonality." Archiv der Mathematik 104, no. 5 (April 18, 2015): 431–39. http://dx.doi.org/10.1007/s00013-015-0762-5.
Full textJi, Donghai, Jingying Li, and Senlin Wu. "On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces." Results in Mathematics 59, no. 1-2 (December 14, 2010): 157–62. http://dx.doi.org/10.1007/s00025-010-0069-6.
Full textBaronti, Marco, and Carlo Franchetti. "The isosceles orthogonality and a new 2-dimensional parameter in real normed spaces." Aequationes mathematicae 89, no. 3 (March 14, 2014): 673–83. http://dx.doi.org/10.1007/s00010-014-0255-9.
Full textWu, Senlin, Yixia He, and Chan He. "Homogeneity of isosceles orthogonality, transitivity of the norm, and characterizations of inner product spaces." Aequationes mathematicae 95, no. 5 (August 9, 2021): 953–66. http://dx.doi.org/10.1007/s00010-021-00841-7.
Full textHao, Cuixia, and Senlin Wu. "Homogeneity of isosceles orthogonality and related inequalities." Journal of Inequalities and Applications 2011, no. 1 (October 11, 2011). http://dx.doi.org/10.1186/1029-242x-2011-84.
Full textvan Diejen, J. F., and E. Emsiz. "Cubature rules from Hall–Littlewood polynomials." IMA Journal of Numerical Analysis, May 21, 2020. http://dx.doi.org/10.1093/imanum/draa011.
Full text