Dissertations / Theses on the topic 'Iteration method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Iteration method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wilkins, Bryce Daniel. "The E² Bathe subspace iteration method." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122238.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-93).
Since its development in 1971, the Bathe subspace iteration method has been widely-used to solve the generalized symmetric-definite eigenvalue problem. The method is particularly useful for solving large eigenvalue problems when only a few of the least dominant eigenpairs are sought. In reference [18], an enriched subspace iteration method was proposed that accelerated the convergence of the basic method by replacing some of the iteration vectors with more effective turning vectors. In this thesis, we build upon this recent acceleration effort and further enrich the subspace of each iteration by replacing additional iteration vectors with our new turning-of-turning vectors. We begin by reviewing the underpinnings of the subspace iteration methodology. Then, we present the steps of our new algorithm, which we refer to as the Enriched- Enriched (E2 ) Bathe subspace iteration method. This is followed by a tabulation of the number of floating point operations incurred during a general iteration of the E2 algorithm. Additionally, we perform a simplified convergence analysis showing that the E2 method converges asymptotically at a faster rate than the enriched method. Finally, we examine the results from several test problems that were used to illustrate the E2 method and to assess its potential computational savings compared to the enriched method. The sample results for the E2 method are consistent with the theoretical asymptotic convergence rate that was obtained in our convergence analysis. Further, the results from the CPU time tests suggest that the E2 method can often provide a useful reduction in computational effort compared to the enriched method, particularly when relatively few iteration vectors are used in comparison with the number of eigenpairs that are sought.
by Bryce Daniel Wilkins.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Chen, Fan. "DISTANCE FIELD TRANSFORM WITH AN ADAPTIVE ITERATION METHOD." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1255727002.
Full textFreitag, Melina. "Inner-outer iterative methods for eigenvalue problems : convergence and preconditioning." Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512248.
Full textKim, Ki-Tae Ph D. Massachusetts Institute of Technology. "The enriched subspace iteration method and wave propagation dynamics with overlapping finite elements." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119346.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 133-137).
In structural dynamic problems, the mode superposition method is the most widely used solution approach. The largest computational effort (about 90% of the total solution time) in the mode superposition method is spent on calculating the required eigenpairs and it is of critical importance to develop effective eigensolvers. We present in this thesis a novel solution scheme for the generalized eigenvalue problem. The scheme is an extension of the Bathe subspace iteration method and a significant reduction in computational time is achieved. For the solution of wave propagation problems, the finite element method with direct time integration has been extensively employed. However, using the traditional finite element solution approach, accurate solutions can only be obtained of rather simple one-dimensional wave propagation problems. In this thesis, we investigate the solution characteristics of a solution scheme using 'overlapping finite elements', disks and novel elements, enriched with harmonic functions and the Bathe implicit time integration method to solve transient wave propagation problems. The proposed solution scheme shows two important properties: monotonic convergence of calculated solutions with decreasing time step size and a solution accuracy almost independent of the direction of wave travel through uniform, or distorted, meshes. These properties make the scheme promising to solve general wave propagation problems in complex geometries involving multiple waves.
by Ki-Tae Kim.
Ph. D.
Altintan, Derya. "An Extension To The Variational Iteration Method For Systems And Higher-order Differential Equations." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613864/index.pdf.
Full textindeed, without such a reduction, variational iteration method is also extended to higher-order scalar equations. Further, the close connection with the associated first-order systems is presented. Such extension of the method to higher-order equations is then applied to solve boundary value problems: linear and nonlinear ones. Although the corresponding Lagrange multiplier resembles the Green&rsquo
s function, without the need of the latter, the extended approach to the variational iteration method is systematically applied to solve boundary value problems, surely in the nonlinear case as well. In order to show the applicability of the method, we have applied the EVIM to various real-life problems: the classical Sturm-Liouville eigenvalue problems, Brusselator reaction-diffusion, and chemical master equations. Results show that the method is simple, but powerful and effective.
Lohaka, Hippolyte O. "MAKING A GROUPED-DATA FREQUENCY TABLE: DEVELOPMENT AND EXAMINATION OF THE ITERATION ALGORITHM." Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1194981215.
Full textTan, Li. "A Computational Iteration Method to Analyze Mechanics of Timing Belt Systems with Non-Circular Pulleys." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/84991.
Full textMaster of Science
Massa, Julio Cesar. "Acceleration of convergence in solving the eigenvalue problem by matrix iteration using the power method." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/101452.
Full textM.S.
Andersson, Tomas. "An iterative solution method for p-harmonic functions on finite graphs with an implementation." Thesis, Linköping University, Department of Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18162.
Full textIn this paper I give a description and derivation of Dirichlet's problem, a boundary value problem, for p-harmonic functions on graphs and study an iterative method for solving it.The method's convergence is proved and some preliminary results about its speed of convergence are presented.There is an implementation accompanying this thesis and a short description of the implementation is included. The implementation will be made available on the internet at http://www.mai.liu.se/~anbjo/pharmgraph/ for as long as possible.
Byers, R., C. He, and V. Mehrmann. "The Matrix Sign Function Method and the Computation of Invariant Subspaces." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800619.
Full textPenzl, T. "A cyclic low rank Smith method for large, sparse Lyapunov equations with applications in model reduction and optimal control." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801035.
Full textZinzani, Filippo. "Calculation of the eigenfunctions of the two-group neutron diffusion equation and application to modal decomposition of BWR instabilities." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amslaurea.unibo.it/594/.
Full textOuyang, Guang. "Study of the variability in brain potentials and responses : development of a new method for electroencephalography (EEG) analysis - residue iteration decomposition (RIDE)." HKBU Institutional Repository, 2013. https://repository.hkbu.edu.hk/etd_ra/1529.
Full textAli, Ali Hasan. "Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.
Full textBenner, Peter, Enrique Quintana-Ortí, and Gregorio Quintana-Ortí. "Solving Linear Matrix Equations via Rational Iterative Schemes." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601460.
Full textПавленко, Іван Володимирович, Иван Владимирович Павленко, Ivan Volodymyrovych Pavlenko, Віта Володимирівна Павленко, Вита Владимировна Павленко, and Vita Volodymyrivna Pavlenko. "Застосування методу послідовних наближень при розв'язанні позиційних задач нарисної геометрії." Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/30604.
Full textМетою роботи є створення, обгрунтування і чисельна реалізація якісно нового способу розв'язання позиційних задач нарисної геометрії, який має ряд переваг порівняно з існуючими методами проекційного креслення. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/30604
Целью работы является создание, обоснование и численная реализация качественно нового способа решения позиционных задач начертательной геометрии, который имеет ряд преимуществ по сравнению с существующими методами проекционного черчения. При цитировании документа, используйте ссылку http://essuir.sumdu.edu.ua/handle/123456789/30604
The aim of this article is creation and numerical implementation of a qualitatively new way of solving positional problems of descriptive geometry, which has some advantages over existing methods of engineering graphics. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/30604
Rogozhin, Alexander. "Approximation Methods for Two Classes of Singular Integral Equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2003. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200300091.
Full textDie Dissertation beschäftigt sich insgesamt mit der numerischen Analysis singulärer Integralgleichungen, besteht aber aus zwei voneinander unabhängigen Teilen. Der este Teil behandelt Diskretisierungsverfahren für mehrdimensionale schwach singuläre Integralgleichungen mit operatorwertigen Kernen. Darüber hinaus wird hier die Anwendung dieser allgemeinen Resultate auf ein Strahlungstransportproblem diskutiert, und numerische Ergebnisse werden präsentiert. Im zweiten Teil betrachten wir ein Kollokationsverfahren zur numerischen Lösung Cauchyscher singulärer Integralgleichungen auf Intervallen. Der Operator der Integralgleichung hat die Form \ $aI + b \mu^{-1} S \mu I $\ mit dem Cauchyschen singulären Integraloperator \ $S,$\ mit stückweise stetigen Koeffizienten \ $a$\ und \ $b,$\ und mit einem klassischen Jacobigewicht \ $\mu.$\ Als Kollokationspunkte dienen die Nullstellen des n-ten Tschebyscheff-Polynoms erster Art und Ansatzfunktionen sind ein in einem geeigneten Hilbertraum orthonormales System gewichteter Tschebyscheff-Polynome zweiter Art. Wir erhalten notwendige und hinreichende Bedingungen für die Stabilität und Konvergenz dieses Kollokationsverfahrens. Außerdem wird das Stabilitätskriterium auf alle Folgen aus der durch die Folgen des Kollokationsverfahrens erzeugten Algebra erweitert. Diese Resultate liefern uns Aussagen über das asymptotische Verhalten der Singulärwerte der Folge der diskreten Operatoren
Hua, Xiaoqin. "Studies on block coordinate gradient methods for nonlinear optimization problems with separable structure." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199447.
Full textCai, Shang-Gui. "Computational fluid-structure interaction with the moving immersed boundary method." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2276/document.
Full textIn this thesis a novel non-body conforming mesh formulation is developed, called the moving immersed boundary method (MIBM), for the numerical simulation of fluid-structure interaction (FSI). The primary goal is to enable solids of complex shape to move arbitrarily in an incompressible viscous fluid, without fitting the solid boundary motion with dynamic meshes. This novel method enforces the no-slip boundary condition exactly at the fluid-solid interface with a boundary force, without introducing any artificial constants to the rigid body formulation. As a result, large time step can be used in current method. To determine the boundary force more efficiently in case of moving boundaries, an additional moving force equation is derived and the resulting system is solved by the conjugate gradient method. The proposed method is highly portable and can be integrated into any fluid solver as a plug-in. In the present thesis, the MIBM is implemented in the fluid solver based on the projection method. In order to obtain results of high accuracy, the rotational incremental pressure correction projection method is adopted, which is free of numerical boundary layer and is second order accurate. To accelerate the calculation of the pressure Poisson equation, the multi-grid method is employed as a preconditioner together with the conjugate gradient method as a solver. The code is further parallelized on the graphics processing unit (GPU) with the CUDA library to enjoy high performance computing. At last, the proposed MIBM is applied to the study of two-way FSI problem. For stability and modularity reasons, a partitioned implicit scheme is selected for this strongly coupled problem. The interface matching of fluid and solid variables is realized through a fixed point iteration. To reduce the computational cost, a novel efficient coupling scheme is proposed by removing the time-consuming pressure Poisson equation from this fixed point interaction. The proposed method has shown a promising performance in modeling complex FSI system
Popuzin, Vitaly. "Methods of fast Fourier transform in diffraction problems of elastic and acoustic waves with applications to crack mechanics." Doctoral thesis, Università di Catania, 2014. http://hdl.handle.net/10761/1548.
Full textGaršvaitė, Skaistė. "Dvimatės elipsinės lygties su nelokaliąja sąlyga sprendimas baigtinių skirtumų metodu." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080619_122640-56101.
Full textIn this work we consider two dimensional elliptic equation on the rectangle with non local condition by finite difference method. We solve two dimensional equations instead one intricate differential equation. A short review of maximum principle and solution finding with iteration method, and the proper account finding with two dimensional case. Estimated differential equationerror, this making calculate elliptic equation difference method. Finally we solve particilar example with different steps.
Albertyn, Martin. "Generic simulation modelling of stochastic continuous systems." Thesis, Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-05242005-112442.
Full textNikazad, Touraj. "Algebraic Reconstruction Methods." Doctoral thesis, Linköping : Linköpings universitet, Department of Mathematics Scientific Computing, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11670.
Full textRogozhin, Alexander. "Approximation methods for two classes of singular integral equations." Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=968783279.
Full textPalladino, Fabio Henrique. "Reconstrução 3D de imagens em tomografia por emissão de pósitrons com Câmaras de Cintilação." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-07032014-160312/.
Full textVolumetric reconstruction in gamma camera based PET imaging Positron Emission Tomography (PET) is considered as a very useful tool for diagnosing and following several diseases in Oncology, Neurology and Cardiology. Two types of systems are available for this imaging modality: the dedicated systems and those based on gamma camera technology. In this work, we assessed a number of factors affecting the quantitation of gamma camera based PET imaging, characterized by a lower sensitivity compared to those of dedicated systems. We also evaluated image quantitation conditions under 2D and 3D acquisition/reconstruction modes, for different reconstruction methods and associated corrections. Acquisition data were simulated by Monte Carla method, using realistic parameters. Several objects of interest were modelled. We reconstructed slices and volumes using FBP, ART, MLEM and OSEM and also included four corrections: detector sensitivity, detector normalization, scatter and attenuation of annihilation photons. We proposed a method to assess detectability and object contrast recovery by using two measurable parameters. Visual analysis was also considered. We found that 3D mode is more effective than 2D for low contrast recovery when the selected (J corrections are applied. Detectability of small structures is limited by partial volume effects and device finite spatial resolution. ART, MLEM and specially 8-subsets OSEM are the most adequate methods for quantitative studies in 3D mode. The parameter that we have defined may also be used as indicators of suitable conditions for quantitation in images.
Aydogdu, Oktay. "Pseudospin Symmetry And Its Applications." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611298/index.pdf.
Full textn plus ring-shaped potential with any spin-orbit coupling term $kappa$. Nikiforov-Uvarov Method, Asymptotic Iteration Method and functional analysis method are used in the calculations. The energy eigenvalue equations of the Dirac particles are found and the corresponding radial wave functions are presented in terms of special functions. We look for the contribution of the ring-shaped potential to the energy spectra of the Dirac particles. Particular cases of the potentials are also discussed. By considering some particular cases, our results are reduced to the well-known ones presented in the literature. In addition, by taking equal mixture of scalar and vector potentials together with tensor potential, solutions of the Dirac equation are found and then the energy splitting between the two states in the pseudospin doublets is investigated. We indicate that degeneracy between members of pseudospin doublet is removed by tensor interactions. Effects of the potential parameters on the pseudospin doublet splitting are also studied. Radial nodes structure of the Dirac spinor are presented.
Scheben, Fynn. "Iterative methods for criticality computations in neutron transport theory." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545319.
Full textDemetriou, Demetris. "An investigation into nonlinear random vibrations based on Wiener series theory." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287637.
Full textYan, Shu. "Efficient numerical methods for capacitance extraction based on boundary element method." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3230.
Full textChoi, Yan-yu. "Residual Julia sets of Newton's maps and Smale's problems on the efficiency of Newton's method." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37680948.
Full textChoi, Yan-yu, and 蔡欣榆. "Residual Julia sets of Newton's maps and Smale's problems on the efficiency of Newton's method." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37680948.
Full textMohammadpour, Rahman. "New methods in forcing iteration and applications." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7050.
Full textThis thesis concerns forcing iterations using virtual models as side conditions. The ultimate goal of such techniques is to achieve a higher forcing axiom. In the firstchapter, we present the necessary materials, including definitions and lemmata for the later chapters. The chapter two contains the scaffolding poset which is a warmup for the later constructions. The notion of a virtual model and its properties are introduced and investigated extensively in the third chapter, where we also study how the virtual models of different types interact. We then introduce, in the fourth chapter, the forcing notion consisting of pure side conditions which are finite sets of countable virtual models and Magidor models. In the chapter five, we plug forcings in our construction from the fourth chapter to form an iteration using virtual models, we analyze properties of our iteration and its quotients by Magidor models suchas the ω1-approximation. The iteration indeed gives a forcing axiom for a certain class of proper forcings which is compatible with 2ℵ0 > @2. The chapter six is devotedto the study of guessing models and their specialization, we introduce certain combinatorial principles in terms of guessing models which can be considered as consequencesof a higher forcing axiom. We shall show their consistency and state their consequences concerning the approachability ideal, Abraham’s maximality principle etc
Claudio, Kleucio. "Elementos finitos com resolução simplificada de sistemas de equações lineares para dispositivos fotônicos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260408.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-16T06:54:22Z (GMT). No. of bitstreams: 1 Claudio_Kleucio_D.pdf: 3139134 bytes, checksum: 900508bd03693258d7011b6af9debd55 (MD5) Previous issue date: 2010
Resumo: O método de elementos finitos é largamente empregado na modelagem de problemas de eletromagnetismo. A modelagem implícita deste método recai em resolver sistemas de equações lineares esparsas, esta etapa é de alto custo computacional. Este trabalho propõe alternativas com o objetivo de melhorar o desempenho computacional das aplicações provenientes de formulações via elementos finitos, através do aproveitamento de soluções de sistemas de equações lineares por métodos direto e iterativo, para simular dispositivos ópticos com as características físicas alteradas constantemente. Na solução dos sistemas de equações, utilizou-se o método direto com Small Rank Adjustment e o método iterativo gradiente bi-conjugado estabilizado precondicionado com análises de reaproveitamento do precondicionador ILUT. Nos estudos desenvolvidos obteve-se um melhor desempenho computacional quando se utilizou o método iterativo. Estes resultados são de grande importância na área de otimização de dispositivos fotônicos tais como acopladores, filtros, demultiplexadores, etc, pois a otimização destes dispositivos consiste em avaliar várias configurações do espaço de busca, implicando em resolver vários sistemas de equações lineares similares provenientes do método de elementos finitos.
Abstract: The Finite Element Method is one of the most popular numerical tools in electromagnetics. Implicit schemes require the solution of sparse linear equation systems, this step demands a lot of computational time. This work proposes alternatives enhancements to obtain better computational performance of such implicit schemes. This was made through the improvement of direct and iterative methods, for problems which may be interpreted as perturbations of a given original one. This is very important specially in the optimization process of devices, due to the fact that one needs to solve many linear systems with little changes at each step, to explore the search space, so many perturbed linear systems are solved to obtain the optimum device. For direct methods the Small Rank Adjustment technique was used, while for iterative methods, the Preconditioned Gradient Stabilized Biconjugate Method reusing the preconditioner, were adopted. The applications were focused on the design of photonic devices, like couplers, filters, demultiplexers, etc.
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
Galbraith, Steven Douglas. "Iterations of elliptic curves." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28620.
Full textBai, Xianglan. "Non-Krylov Non-iterative Subspace Methods For Linear Discrete Ill-posed Problems." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1627042947894919.
Full textGarner, William Howard. "Iteration of the power operation." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/941367.
Full textDepartment of Mathematical Sciences
Neuman, Arthur James III. "Regularization Methods for Ill-posed Problems." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1273611079.
Full textKhavanin, Mohammad. "The Method of Mixed Monotony and First Order Delay Differential Equations." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96643.
Full textEn este artículo se prueba una generalización del método de monotonía mixta, para construir sucesiones monótonas que convergen a la solución única de una ecuación diferencial de retraso con valor inicial.
Padhy, Bijaya L. "NITSOL -- A Newton iterative solver for nonlinear systems a FORTRAN-to-MATLAB implementation." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-042806-161216/.
Full textMcKay, Melanie. "Iterative methods for incompressible flow." Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28063.
Full textZhu, Qiwei. "High performance stationary iterative methods." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498981.
Full textMacHardy, William R. "Iterative methods for parameter estimation." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA246174.
Full textThesis Advisor(s): Tummala, Murali. Second Reader: Therrien, Charles W. "December 1990." Description based on title screen as viewed on April 1, 2010. DTIC Identifier(s): Iterations, Parametric Analysis, Algorithms, Estimates, Theses, Computerized Simulation, Convergence. Author(s) subject terms: Finite Impulse Response, Infinite Impulse Response, Matrix Splitting, Matrix Portioning, Toeplitz, Symmetric, Condition Number. Includes bibliographical references (p. 90). Also available in print.
Lechner, Patrick O. "Iterative methods for heterogeneous media." Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432374.
Full textSolov'ëv, Sergey I. "Preconditioned iterative methods for a class of nonlinear eigenvalue problems." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601389.
Full textKarelius, Fanny. "Stationary iterative methods : Five methods and illustrative examples." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-69711.
Full textBiazotti, Herbert Antonio. "Soluções solitônicas por aproximantes de Padé via método iterativo de Taylor /." Guaratinguetá, 2018. http://hdl.handle.net/11449/157328.
Full textCoorientador: Álvaro de Souza Dutra
Banca: Julio Marny Hoff da Silva
Banca: Rafael Augusto Couceiro Corrêa
Resumo: Certos sistemas físicos podem ser descritos por uma classe de equações não-lineares. Essas equações descrevem pacotes de onda chamado de sólitons que tem aplicações em diversas áreas, por exemplo, Óptica, Cosmologia, Matéria Condensada e Física de Partículas. Alguns métodos foram desenvolvidos ao longo dos anos para encontrar as soluções dessas equações. Buscaremos essas soluções usando o que chamamos de Método Iterativo de Taylor (MIT), que fornece uma solução aproximada em polinômio de Taylor de forma distinta do que se tem na literatura. Usaremos o MIT para calcular soluções por aproximantes de Padé que são razões entre dois polinômios e fornecem soluções melhores que o polinômio de Taylor que o gerou. Inicialmente resolveremos a equação de um modelo de um campo denominado λφ4 . Em seguida resolveremos um modelo com dois campos escalares acoplados e encontraremos uma solução analítica aproximada em casos onde não existe solução analítica, explorando a diversidade das soluções do modelo. Usando essa abordagem por aproximantes de Padé veremos que há algumas vantagens em relação a outros métodos
Abstract: Certain physical systems can be described by a class of non-linear differential equations. Those equations describe wave packets called solitons which have applications in several areas, for example, Optics, Cosmology, Condensed Matter, and Particle Physics. Some methods have been developed over the years to find solutions to these equations. We will look for those solutions using what we call the Taylor Iterative Method (TIM), which provides an approximate solution in terms of a Taylor's polynomial in a unusual way, regarding the present literature. We will use TIM to calculate solutions by Padé approximants, which are ratios between two polynomials and provide better solutions than the Taylor polynomial itself. We first solve the field equation of a model called λφ4 . Then we will solve a model with two coupled scalar fields and find an approximate analytic solution in cases where there is no known analytical solution, exploring the diversity of the solutions of the model. We will see that there are some advantages in using the Padè approximants as compared to other methods
Mestre
Helou, Neto Elias Salomão. "Algoritmos incrementais com aplicações em tomografia computadorizada." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307603.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T11:27:52Z (GMT). No. of bitstreams: 1 HelouNeto_EliasSalomao_D.pdf: 7993687 bytes, checksum: 12333395c593dd0cbddf79352f61c458 (MD5) Previous issue date: 2009
Resumo: O problema de viabilidade convexa é um campo fértil de pesquisa que deu origem a uma grande quantidade de algoritmos iterativos, tais como pocs, art, Cimmino e uma miríade de variantes. O motivo para tal interesse é o amplo leque de aplicabilidade que algoritmos gerais para a solução de problemas desse tipo podem alcançar. Dentre tais aplicações encontra-se a reconstrução de imagens em tomografia, caso que geralmente apresenta uma estrutura especial de esparsidade e tamanhos gigantescos. Também bastante estudados por seu interesse prático e teórico são problemas envolvendo a minimização irrestrita de funções convexas. Aqui, novamente, a variada gama de aplicações torna impossível mencionar uma lista minimamente abrangente. Dentre essas a tomografia é, outra vez, um exemplo de grande destaque. No presente trabalho desenvolvemos uma ponte que permite o uso de uma variedade de métodos para viabilidade em conjunto com algoritmos de otimização para obter a solução de problemas de otimização convexa com restrições. Uma teoria geral de convergência é apresentada e os resultados teóricos são especializados em métodos apropriados para problemas de grande porte. Tais métodos são testados em experimentos numéricos envolvendo reconstrução de imagens tomográficas. Esses testes utilizam-se da teoria de amostragem compressiva desenvolvida recentemente, através da qual conseguimos obter resultados sem par na reconstrução de imagens tomográficas a partir de uma amostragem angular altamente esparsa da transformada de Radon. Imagens obtidas a partir de dados simulados são recuperadas perfeitamente com menos de 1/20 das amostras classicamente necessárias. Testes com dados reais mostram que o tempo de uma leitura spect pode ser reduzido a até 1/3 do tempo normalmente utilizado, sem grande prejuízo para as reconstruções.
Abstract: The convex feasibility problem is a research field which has originated a large variety of iterative algorithms, such as pocs, art, Cimmino and a myriad of variants. The reason for such interest is the wide array of applicability that general algorithms for this kind of problem may reach. Among such applications there is tomographic image reconstruction, instance that generally presents a special sparsity structure and huge sizes. Also widely studied because its practical and theoretical interests are problems involving unconstrained minimization of convex functions. Here, again, the huge array of applications makes it impossible to mention even a minimal list. Among these, once more, tomography is a major example. In the present work we have developed a bridge that allows the use of a variety of methods for feasibility in conjunction with optimization algorithms in order to obtain the solution for convex optimization problems with restrictions. A general convergence theory is presented and the theoretical results are specialized into methods useful for large scale problems. These methods are tested in experiments involving tomographic image reconstruction. Such tests make use of the recently developed compressive sensing theory, through which we have been able to obtain unmatched results in tomographic image reconstruction from highly sparse angular sampling from the Radon transform. Images obtained from simulated data are perfectly reconstructed using less than 1/20 from the classically needed. Tests with real data show that the time of a spect scan can be reduced to 1/3 of the usual, without too much image deterioration.
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Vogelgesang, Jonas [Verfasser]. "Semi-discrete iteration methods in x-ray tomography / Jonas Vogelgesang." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1219068713/34.
Full textBerti, Lilian Ferreira 1988. "Iteração continuada aplicada ao método de pontos interiores." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306753.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T05:01:05Z (GMT). No. of bitstreams: 1 Berti_LilianFerreira_M.pdf: 11222489 bytes, checksum: 8a581cf3762be9e96b4f77b7206e3112 (MD5) Previous issue date: 2012
Resumo: Os métodos de pontos interiores têm sido amplamente utilizados para determinar a solução de problemas de programação linear de grande porte. O método preditor corretor, dentre todas as variações de métodos de pontos interiores, é um dos que mais se destaca, devido à sua eficiência e convergência rápida. Este método, em cada iteração, necessita resolver dois sistemas lineares para determinar a direção preditora corretora. Resolver estes sistemas lineares corresponde ao passo que requer mais tempo de processamento, devendo assim ser realizada de forma eficiente. Para resolver estes sistemas lineares a abordagem mais utilizada é a fatoração de Cholesky. No entanto, realizar a fatoração de Cholesky em cada iteração tem um alto custo computacional. Dessa forma, na busca de redução de esforços, precisamente, na redução do número de iterações foi desenvolvida a iteração continuada. Iteração continuada é uma iteração subsequente, realizada após o cálculo da direção preditora corretora, onde é determinada uma nova direção sem que seja necessário realizar uma nova fatoração de Cholesky. Os resultados computacionais dos testes realizados, principalmente em problemas de médio e grande porte mostraram que esta abordagem obtém bom desempenho em comparação com o método preditor corretor
Abstract: Interior point methods have been widely used in the solution of large linear programming problems. The predictor corrector method, among ali interior point variants, is one of mostly used due to its efficiency and convergence properties. This method needs the solution of two linear systems to determine the predictor corrector direction, in each iteration. Solving such systems corresponds to the step which requires more processing time. Therefore, it should be done efficiently. The most common approach to solve the linear systems is the Cholesky factorization, demanding in each iteration a high computacional effort. Thus, in search of effort reduction, in particular, to reduce the iterations number continued iteration was developed. The continued iteration is a subsequent iteration performed after the predictor corrector direction is computed, where a new direction is calculated without need to of Cholesky refactorization. The numerical tests show that the continued iteration performs better in comparison with the preditor corretor method
Mestrado
Matematica Aplicada
Mestre em Matemática Aplicada
Figueiredo, Patric. "Iterative method for solving inverse heat conduction problems." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14400.
Full text