Academic literature on the topic 'Iterative Airborne Lidar Inversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Iterative Airborne Lidar Inversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Iterative Airborne Lidar Inversion"
Stachlewska, I. S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle. "AMALi – the Airborne Mobile Aerosol Lidar for Arctic research." Atmospheric Chemistry and Physics 10, no. 6 (March 29, 2010): 2947–63. http://dx.doi.org/10.5194/acp-10-2947-2010.
Full textLiu Houtong, 刘厚通, 葛占旗 Ge Zhanqi, 王珍珠 Wang Zhenzhu, 黄威 Huang Wei, and 周军 Zhou Jun. "Extinction Coefficient Inversion of Airborne Lidar Detecting in Low-Altitude by Fernald Iterative Backwark Integration Method (FIBIM)." Acta Optica Sinica 28, no. 10 (2008): 1837–43. http://dx.doi.org/10.3788/aos20082810.1837.
Full textChen, Xiang, and Moriya. "Individual Tree Position Extraction and Structural Parameter Retrieval Based on Airborne LiDAR Data: Performance Evaluation and Comparison of Four Algorithms." Remote Sensing 12, no. 3 (February 8, 2020): 571. http://dx.doi.org/10.3390/rs12030571.
Full textZhou, Daniel K., William L. Smith, Xu Liu, Allen M. Larar, Stephen A. Mango, and Hung-Lung Huang. "Physically Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements." Journal of the Atmospheric Sciences 64, no. 3 (March 1, 2007): 969–82. http://dx.doi.org/10.1175/jas3877.1.
Full textGao, Meng, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, et al. "Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model." Atmospheric Measurement Techniques 14, no. 6 (June 4, 2021): 4083–110. http://dx.doi.org/10.5194/amt-14-4083-2021.
Full textYang, X., X. Xi, C. Wang, J. Shi, and Y. Huang. "A PHYSICAL INVERSION METHOD OF CANOPY FPAR FROM AIRBORNE LIDAR DATA AND GROUND MEASUREMENTS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (August 21, 2020): 553–57. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-553-2020.
Full textLiu, Hang, Peng Chen, Zhihua Mao, and Delu Pan. "Iterative retrieval method for ocean attenuation profiles measured by airborne lidar." Applied Optics 59, no. 10 (February 13, 2020): C42. http://dx.doi.org/10.1364/ao.379406.
Full textJi Chengli, 季承荔, and 周军 Zhou Jun. "New Calibration Method for Fernald Forward Inversion of Airborne Lidar Signals." Acta Optica Sinica 29, no. 8 (2009): 2051–58. http://dx.doi.org/10.3788/aos20092908.2051.
Full textMa, Xin, Haowei Zhang, Ge Han, Hao Xu, Tianqi Shi, Wei Gong, Yue Ma, and Song Li. "High-Precision CO2 Column Length Analysis on the Basis of a 1.57-μm Dual-Wavelength IPDA Lidar." Sensors 20, no. 20 (October 17, 2020): 5887. http://dx.doi.org/10.3390/s20205887.
Full textMarenco, F. "Nadir airborne lidar observations of deep aerosol layers." Atmospheric Measurement Techniques 6, no. 8 (August 15, 2013): 2055–64. http://dx.doi.org/10.5194/amt-6-2055-2013.
Full textDissertations / Theses on the topic "Iterative Airborne Lidar Inversion"
Stachlewska, Iwona Sylwia. "Investigation of tropospheric arctic aerosol and mixed-phase clouds using airborne lidar technique." Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/698/.
Full textDas Airborne Mobile Aerosol Lidar (AMALi) wurde am Alfred-Wegener-Institut für Polar- und Meeresforschung in Potsdam für die Untersuchung arktischer Aerosole und Wolken der unteren Troposphäre entwickelt und gebaut. Das AMALi wurde erfolgreich in zwei AWI Flugzeugmesskampagnen, der ASTAR 2004 und der SvalEx 2005, die in Spitzbergen in der Arktis durchgeführt wurden, eingesetzt. Zwei neue Lidar Datenauswertungsmethoden wurden implementiert: die Two-Stream Inversion und die Iterative Airborne Inversion. Damit erwies sich die Berechnung der Profile der Teilchen Rückstreu- und Extinktionskoeffizienten mit einem entsprechenden Lidar Verhältnis, das charakteristisch für arktische Luft ist, als möglich. Der Vergleich dieser Auswertungen mit den Resultaten, die mit verschiedenen Fernerkundungs- und In-situ Instrumenten gewonnen worden waren (stationäres Koldewey Aerosol Raman Lidar KARL, Sonnenphotometer, Radiosondierung und Satellitenbilder) ermöglichten die Interpretation der Lidar-Resultate und eine Charakterisierung sowohl der reinen als auch der verschmutzten Luft. Außerdem konnten die Lidardaten mit operationellen ECMWF Daten und dem kleinskaligen Dispersionsmodel EULAG verglichen werden. Dadurch konnte der Einfluss der Spitzbergener Orographie auf die Aerosolladung der Planetaren Grenzschicht untersucht werden. Für Wolkenmessungen wurde eine neue Methode der alternativen Fernerkundung mit dem AMALi und flugzeuggetragenen In-situ Messgeräten verwendet, um optische und mikrophysikalische Eigenschaften der Wolken zu bestimmen. Diese Methode wurde erfolgreich implementiert und auf Mixed-Phase Wolken geringer optischen Dicke angewendet. Ein Beispiel hier stellt das Besamen der Wolken (sogenannte Feeder-Seeder Effekt) dar, bei dem Eiskristalle in eine niedrige unterkühlte Stratokumulus fallen. Dabei konnten Lidarsignale, Intensitätsprofile und die Volumendepolarisation gemessen werden. Zusätzlich konnten in den weniger dichten Bereichen der Wolken, in denen Vielfachstreuung vernachlässigbar ist, auch Profile des Teilchen Rückstreukoeffizienten berechnet werden, wobei Lidarverhältnisse genommen wurden, die aus In-situ Messungen für Wasser- und Eiswolken ermittelt wurden.
Cazenave, Quitterie. "Development and evaluation of multisensor methods for EarthCare mission based on A-Train and airborne measurements." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV020/document.
Full textThe impact of ice clouds on the water cycle and radiative budget is still uncertain due to the complexity of cloud processes that makes it difficult to acquire adequate observations of ice cloud properties and parameterize them into General Circulation Models. Passive and active remote sensing instruments, radiometers, radars and lidars, are commonly used to study ice clouds. Inferring cloud microphysical properties (extinction, ice water content, effective radius, ...) can be done from one instrument only, or from the synergy of several. The interest of using instrumental synergies to retrieve cloud properties is that it can reduce the uncertainties due to the shortcomings of the different instruments taken separately. The A-Train constellation of satellites has considerably improved our knowledge of clouds. Since 2006, the 532nm backscattering lidar CALIOP on board the satellite CALIPSO and the 94GHz cloud radar CPR on board the satellite CloudSat have acquired cloud vertical profiles globally and many lidar-radar synergetic methods have been adapted to CloudSat and CALIPSO data. In 2021 will be launched a new satellite, EarthCARE, boarding state of the art remote sensing instrumentation, in particular ATLID, a High Spectral Resolution Lidar (HSRL) at 355nm and a Doppler cloud radar at 94 GHz. The main mission of this satellite is to quantify interactions between clouds, aerosols and the Earth's radiation budget in order to improve weather prediction and climate models. Thanks to its advanced instrumentation mounted on a single platform, this new mission is expected to provide unprecedented observations of clouds from space. However, to do so, the synergistic algorithms that were developed for A-Train measurements have to be adapted to this new instrumental configuration. During my PhD, I focused on the Varcloud algorithm that was developed in 2007 by Delanoë and Hogan, based on a variational technique. The first part of the work consisted in adapting some parameters of the microphysical model of the algorithm to recent studies of a large dataset of in-situ measurements. In particular, the questions of a parameterization of the lidar extinction-to-backscatter ratio and the choice of the mass-size relationship for ice crystals were addressed. The second part of my work consisted in adapting the Varcloud retrieval algorithm to airborne platforms. Airborne platforms are ideal to prepare and validate space missions, allowing for direct underpasses of spaceborne instruments. Moreover, German and French aircraft, respectively HALO and French Falcon 20 have very complementary payloads and are perfectly designed for the preparation, the calibration and the validation of EarthCare. Both aircraft board a high spectral resolution lidar (355 nm on the French Falcon and 532 nm on the HALO) and a Doppler radar at 36 GHz (HALO) and 95 GHz (Falcon). In fall 2016 a field campaign related to the NAWDEX project took place in Iceland, Keflavik with both aircraft involved. The measurements collected during this campaign provide an interesting dataset to characterize cloud microphysics and dynamics in the North Atlantic, which are of high interest regarding the Cloudsat-CALIPSO and EarthCARE missions. In addition, a series of common legs with the same cloud scene observed by both platforms were performed, providing data to study the influence of the instrumental configuration on the retrieved ice cloud properties
Su, Haibin. "Derivation of Coastal Bathymetry and Stream Habitat Attributes Using Remote Sensing Images and Airborne LiDAR." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1313688135.
Full textWei-YuanDeng and 鄧崴元. "3D Building Modeling from Airborne LiDAR Data using Block-based Iterative Detection." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/vb7yz9.
Full text國立成功大學
測量及空間資訊學系
105
SUMMARY Until now, many approaches on 3D building modeling have been proposed. Generally, these methods are distinguished into two categories: data-driven approach and model-driven approach. The former one is based on the geometric information of the input data while the latter one is generally depended on the combination of pre-defined parametric primitives. Both of these two methods have disadvantages in modeling precision and flexibility. To achieve an appropriate balance between reconstruction precision and visualization aspects, this study proposes a novel method that utilizes block structures and Boolean operation to reconstruct building model. By using the proposed method, the reconstructed model maintains high complexity, flexibility and better precision. Keywords: Airborne LiDAR point cloud, Point cloud segmentation, Model refinement, Constructive Solid Geometry, Building model reconstruction
Book chapters on the topic "Iterative Airborne Lidar Inversion"
Trouillet, Vincent, Patrick Chazette, Jacques Pelon, and Cyrille Flamant. "Assessment of the Oceanic Surface Reflectance by Airborne Lidar to Improve a Stable Inversion Technique." In Advances in Atmospheric Remote Sensing with Lidar, 47–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_12.
Full textConference papers on the topic "Iterative Airborne Lidar Inversion"
Zhou, Mengwei, Qinhuo Liu, Qiang Liu, Qing Xiao, and Bo Zhong. "The inversion of crop height based on small-footprint waveform airborne lidar." In IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010. http://dx.doi.org/10.1109/igarss.2010.5654143.
Full textXiao Zhang and Craig Glennie. "Change detection from differential airborne LiDAR using a weighted anisotropic iterative closest point algorithm." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6946895.
Full textWang, Qiang, Wenge Ni-Meister, Wenjian Ni, and Yong Pang. "The Potential of Forest Biomass Inversion Based on Canopy-Independent Structure Metrics Tested by Airborne LiDAR Data." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8898393.
Full textNotarnicola, Claudia, and Francesco Posa. "Bayesian iterative inversion algorithm applied to soil moisture mapping using ground-based and airborne remote sensing data." In Remote Sensing, edited by Francesco Posa. SPIE, 2004. http://dx.doi.org/10.1117/12.514413.
Full text