Academic literature on the topic 'Iterative Solvers (Preconditioned Conjugate Gradient)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Iterative Solvers (Preconditioned Conjugate Gradient).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Iterative Solvers (Preconditioned Conjugate Gradient)"
Bertolazzi, Enrico, and Marco Frego. "Preconditioning Complex Symmetric Linear Systems." Mathematical Problems in Engineering 2015 (2015): 1–20. http://dx.doi.org/10.1155/2015/548609.
Full textCamargos, Ana Flávia P., Viviane C. Silva, Jean-M. Guichon, and Gérard Meunier. "GPU-accelerated iterative solution of complex-entry systems issued from 3D edge-FEA of electromagnetics in the frequency domain." International Journal of High Performance Computing Applications 31, no. 2 (July 28, 2016): 119–33. http://dx.doi.org/10.1177/1094342015584476.
Full textJin, Xiao-Qing, Fu-Rong Lin, and Zhi Zhao. "Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations." Communications in Computational Physics 18, no. 2 (July 30, 2015): 469–88. http://dx.doi.org/10.4208/cicp.120314.230115a.
Full textQiu, Changkai, Changchun Yin, Yunhe Liu, Xiuyan Ren, Hui Chen, and Tingjie Yan. "Solution of large-scale 3D controlled-source electromagnetic modeling problem using efficient iterative solvers." GEOPHYSICS 86, no. 4 (June 30, 2021): E283—E296. http://dx.doi.org/10.1190/geo2020-0461.1.
Full textBello, Musa, Jianxin Liu, and Rongwen Guo. "Three-Dimensional Wide-Band Electromagnetic Forward Modelling Using Potential Technique." Applied Sciences 9, no. 7 (March 29, 2019): 1328. http://dx.doi.org/10.3390/app9071328.
Full textPuglisi, Giuseppe, Davide Poletti, Giulio Fabbian, Carlo Baccigalupi, Luca Heltai, and Radek Stompor. "Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets." Astronomy & Astrophysics 618 (October 2018): A62. http://dx.doi.org/10.1051/0004-6361/201832710.
Full textJu, S. H., and H. H. Hsu. "An Out-of-Core Eigen-Solver with OpenMP Parallel Scheme for Large Spare Damped System." International Journal of Computational Methods 16, no. 07 (July 26, 2019): 1950038. http://dx.doi.org/10.1142/s0219876219500385.
Full textMoutafis, Byron E., George A. Gravvanis, and Christos K. Filelis-Papadopoulos. "Hybrid multi-projection method using sparse approximate inverses on GPU clusters." International Journal of High Performance Computing Applications 34, no. 3 (February 13, 2020): 282–305. http://dx.doi.org/10.1177/1094342020905637.
Full textBetté, Srinivas, Julio C. Diaz, William R. Jines, and Trond Steihaug. "A block preconditioned conjugate gradient-type iterative solver for linear systems in thermal reservoir simulation." Journal of Computational Physics 67, no. 1 (November 1986): 37–58. http://dx.doi.org/10.1016/0021-9991(86)90114-2.
Full textBergamaschi, Luca. "A Survey of Low-Rank Updates of Preconditioners for Sequences of Symmetric Linear Systems." Algorithms 13, no. 4 (April 21, 2020): 100. http://dx.doi.org/10.3390/a13040100.
Full textDissertations / Theses on the topic "Iterative Solvers (Preconditioned Conjugate Gradient)"
O'Neal, Jerome W. "The use of preconditioned iterative linear solvers in interior-point methods and related topics." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-06242005-162854/.
Full textParker, R. Gary, Committee Member ; Shapiro, Alexander, Committee Member ; Nemirovski, Arkadi, Committee Member ; Green, William, Committee Member ; Monteiro, Renato, Committee Chair.
Solov'ëv, Sergey I. "Preconditioned iterative methods for monotone nonlinear eigenvalue problems." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600657.
Full textBounaim, Aïcha. "Méthodes de décomposition de domaine : application à la résolution de problèmes de contrôle optimal." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00004809.
Full textRocha, João Miguel Lopes de Almeida. "Aceleração GPU da animação de superfícies deformáveis." Master's thesis, FCT - UNL, 2008. http://hdl.handle.net/10362/1880.
Full textA simulação de tecidos virtuais desempenha um papel importante em diversas áreas, como as indústrias dos jogos de computador e do cinema, sendo um tópico de investigação com grande actividade. A simulação é, normalmente, efectuada recorrendo a sistemas de partículas. Sobre as partículas são, de uma forma geral, definidas uma série de interacções com base num modelo físico de superfície, que caracteriza as propriedades do tecido, sobretudo no que diz respeito às suas deformações internas. A simulação é uma tarefa de computação extremamente intensiva graças a factores como a avaliação do modelo da superfície ou a utilização de métodos de integração numérica para a resolução do sistema de equações diferenciais que determinam a dinâmica do tecido. Qualquer destes factores depende, de forma directa, do número de partículas usado para discretizar a superfície. Na área da computação gráfica, alguns trabalhos foram já realizados no sentido de acelerar a animação da simulação de tecidos através da programação de GPU, como em [Zel05], [Zel07] e [Den06]. O GPU moderno contém vários processadores especializados em processar grandes quantidades de dados em paralelo, apresentando uma capacidade computacional, no que toca ao número de operações de vírgula flutuante por unidade de tempo, muito superior à do CPU, sendo particularmente apropriado a problemas que possam ser expressos como computações paralelas com alta intensidade de cálculo matemático. Neste trabalho, pretende-se contribuir com a aceleração de um simulador de tecidos com realismo acrescido, desenvolvido em [Birr07], recorrendo a um modelo de hardware e programação para GPU inovador, que o apresenta como um verdadeiro co-processador genérico ao CPU, o NVIDIA CUDA [Cud07]. As contribuições previstas estendem-se à realização de um estudo sobre as vantagens e desvantagens da utilização deste modelo quando comparado com outros, como [Zel05], [Zel07] ou [Den06], através de uma análise cuidada dos resultados obtidos, bem como quais as melhores soluções conseguidas na prática.
Book chapters on the topic "Iterative Solvers (Preconditioned Conjugate Gradient)"
Fillmore, Travis B., Varun Gupta, and Carlos Armando Duarte. "Preconditioned Conjugate Gradient Solvers for the Generalized Finite Element Method." In Meshfree Methods for Partial Differential Equations IX, 1–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15119-5_1.
Full textPeng, Jie, Shi Shu, Chunsheng Feng, and Xiaoqiang Yue. "BPX-Like Preconditioned Conjugate Gradient Solvers for Poisson Problem and Their CUDA Implementations." In Advances in Intelligent Systems and Computing, 633–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38789-5_70.
Full textConference papers on the topic "Iterative Solvers (Preconditioned Conjugate Gradient)"
Kushida, Noriyuki, Hiroshi Okuda, and Genki Yagawa. "Large-Scale Parallel Finite Element Analysis of the Stress Singular Problems." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22562.
Full textXuewei Ping and Tie Jun Cui. "The SSOR preconditioned bi-conjugate gradient iterative solver for finite element solution of scattering problems." In 2009 International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1341.
Full textMut, Fernando, Romain Aubry, Guillaume Houzeaux, Juan Cebral, and Rainald Lohner. "Deflated Preconditioned Conjugate Gradient Solvers: Extensions and Improvements." In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-118.
Full textMut, Fernando, Romain Aubry, Guillaume Pierrot, Jean Roger, Juan Cebral, and Rainald Lohner. "Coarse-Grain Deflation for Preconditioned Conjugate Gradient Solvers: Application to the Pressure Poisson Equation." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-165.
Full textSowayan, A. S., A. Bénard, and A. R. Diaz. "A Wavelets Method for Solving Heat Transfer and Viscous Fluid Flow Problems." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16312.
Full textTanaka, Nobuatsu. "Wavelet-Preconditioned Conjugate Gradient Poisson Solver and Its Use in Parallel Processing: Application of Haar Wavelet." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31119.
Full textYue, Xiaoqiang, Shi Shu, and Chunsheng Feng. "UA-AMG Methods for 2-D 1-T Radiation Diffusion Equations and Their CPU-GPU Implementations." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16157.
Full textKotteda, V. M. Krushnarao, Ashesh Chattopadhyay, Vinod Kumar, and William Spotz. "Next-Generation Multiphase Flow Solver for Fluidized Bed Applications." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69555.
Full textDennis, Brian H. "The Inverse Least-Squares Finite Element Method Applied to the Convection-Diffusion Equation." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12083.
Full textKumar, Rajeev, and Brian H. Dennis. "A Least-Squares Galerkin Split Finite Element Method for Compressible Navier-Stokes Equations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87569.
Full textReports on the topic "Iterative Solvers (Preconditioned Conjugate Gradient)"
Moridis, G., K. Pruess, and E. Antunez. T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/145291.
Full textOppe, T., W. Joubert, and D. Kincaid. NSPCG (Nonsymmetric Preconditioned Conjugate Gradient) user's guide: Version 1. 0: A package for solving large sparse linear systems by various iterative methods. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/7035748.
Full text